• Title/Summary/Keyword: Graphite layer

Search Result 239, Processing Time 0.027 seconds

Growth of GaAs/AlGaAs structure for photoelectric cathode (광전음극 소자용 GaAs/AlGaAs 구조의 LPE 성장)

  • Bae, Sung Geun;Jeon, Injun;Kim, Kyoung Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.282-288
    • /
    • 2017
  • In this paper, GaAs/AlGaAs multi-layer structure was grown by liquid phase epitaxy with graphite sliding boat, which can be used as a device structure of a photocathode image sensor. The multi-layer structure was grown on an n-type GaAs substrate in the sequence as follows: GaAs buffer layer, Zn-doped p-type AlGaAs layer as etching stop layer, Zn-doped p-type GaAs layer, and Zn-doped p-type AlGaAs layer. The Characteristics of GaAs/AlGaAs structures were analyzed by using scanning electron microscope (SEM), secondary ion mass spectrometer (SIMS) and hall measurement. The SEM images shows that the p-AlGaAs/p-GaAs/p-AlGaAs multi-layer structure was grown with a mirror-like surface on a whole ($1.25mm{\times}25mm$) substrate. The Al composition in the AlGaAs layer was approximately 80 %. Also, it was confirmed that the free carrier concentration in the p-GaAs layer can be adjusted to the range of $8{\times}10^{18}/cm^2$ by hall measurement. In the result, it is expected that the p-AlGaAs/p-GaAs/p-AlGaAs multi-layer structure grown by the LPE can be used as a device structure of a photoelectric cathode image sensor.

Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate (고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정)

  • Oh, In-Hwan;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

Decomposition Mechanism of Waste Hard Metals using by ZDP (Zinc Decomposition Process) (ZDP(Zinc Decomposition Process)를 이용한 폐 초경합금의 분해기구)

  • Pee, Jae-Hwan;Kim, Yoo-Jin;Sung, Nam-Eui;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.173-177
    • /
    • 2011
  • Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc valatilization pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 h at $650^{\circ}C$, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of ${\gamma}-{\beta}1$ phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at $1000^{\circ}C$.

Effects of 2-Phase Matrix Structure on Fatigue Limit of High Strength Ductile Iron (고강도 구상흑연주철의 피로한도에 미치는 2상 기지조직의 영향)

  • Kim, Jin-Hak;Ji, Jueng-Keun;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.75-79
    • /
    • 1999
  • Rotary bending fatigue tests were performed to investigate the effects of 2-phase matrix structure on fatigue limit with prepared specimens in high strength ductile irons. Two types of the specimens with different microstructures have been used. Series A has sorbite and series B has bainite. Fatigue limits of both specimens are improved comparing with as cast specimen. The fatigue limit is higher in series B than in series A. The reason why the fatigue limit of series A shows inferiority to that of series B is due to the transition of micro fatigue cracks to mesocrack occurs very rapidly, so increased stress intensity factor drives the fatigue crack growth. The higher fatigue limit of series B which has bainite is caused by the ${\gamma}$ layer contained in microstructure impede the rapid growth of micro fatigue crack to mesocrack and ${\alpha}$ layer around graphite has the higher capacity for the absorption of plastic deformation energy than sorbite.

  • PDF

Optical process of polysilicaon on insulator and its electrical characteristics (절연체위의 다결정실리콘 재결정화 공정최적화와 그 전기적 특성 연구)

  • 윤석범;오환술
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.331-340
    • /
    • 1994
  • Polysilicon on insulator has been recrystallized by zone melting recrystallization method with graphite strip heaters. Experiments are performed with non-seed SOI structures. When the capping layer thickness of Si$\_$3/N$\_$4//SiO$\_$2/ is 2.0.mu.m, grain boundaries are about 120.mu.m spacing and protrusions reduced. After the seed SOI films are annealed at 1100.deg. C in NH$\_$3/ ambient for 3 hours, the recrystallized silicon surface has convex shape. After ZMR process, the tensile stress is 2.49*10$\^$9/dyn/cm$\^$2/ and 3.74*10$\^$9/dyn/cm$\^$2/ in the seed edge and seed center regions. The phenomenon of convex shape and tensile stress difference are completely eliminated by using the PSG/SiO$\_$2/ capping layer. The characterization of SOI films are showed that the SOI films are improved in wetting properties. N channel SOI MOSFET has been fabricated to investigate the electrical characteristics of the recrystallized SOI films. In the 0.7.mu.m thickness SOI MOSFET, kink effects due to the floating substrate occur and the electron mobility was calculated from the measured g$\_$m/ characteristics, which is about 589cm$\^$2//V.s. The recrystallized SOI films are shown to be a good single crystal silicon.

  • PDF

Geometrical and Electronic Structure of Epitaxial Graphene on SiC(0001) : A Scanning Tunneling Microscopy Study

  • Ha, Jeong-Hoon;Yang, Hee-Jun;Baek, Hong-Woo;Chae, Jung-Seok;Hwang, Beom-Yong;Kuk, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.368-368
    • /
    • 2010
  • Monolayers of graphite can be grown by fine controlled surface graphitization on the surfaces of various metallic and semiconducting materials. Epitaxial graphene grown on polished silicon carbide crystal surfaces has drawn much attention due to well known vacuum annealing procedures from surface analysis methods, especially scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). In this study, we have grown single layer and few layer graphene on silicon terminated 6H-SiC(0001) crystals. The growth of graphene layers were observed by low energy electron diffraction(LEED) patterns. Scanning tunneling microscopy and spectroscopy measurements were performed to illustrate the electronic structure which may display some clue on the influence of the underlying structure. Spatially resolved STS results acquired at the edges of epitaxial graphene show in detail the electron density of states, which is compared to theoretical calculations. STM measurements were also done on graphene films grown by chemical vapor deposition(CVD) and transferred onto a SiC(0001) crystal. These observations may provide a hint for the understanding of carrier scattering at the edges.

  • PDF

Fabrication and Impact Properties of $Nb/MoSi_2-ZrO_2$ Laminate Composites ($Nb/MoSi_2-ZrO_2$ 적층복합재료의 제조 및 충격특성)

  • Lee, Sang-Pill;Yoon, Han-Ki;Kong, Yoo-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • [ $Nb/MoSi_2-ZrO_2$ ] laminate composites have been successfully fabricated by alternately stacking $MoSi_2-ZrO_2$ powder layer and Nb sheet, followed by hot pressing in a graphite mould. The fabricating parameters were selected as hot press temperatures. The instrumented Charpy impact test was carried out at the room temperature in order to investigate the relationship between impact properties and fabricating temperatures. The interfacial shear strength between $MoSi_2-ZrO_2$ and Nb, which is associated with the fabricating temperature and the growth of interfacial reaction layer, is also discussed. The plastic deformation of Nb sheet and the interfacial delamination were macroscopically observed. The $Nb/MoSi_2-ZrO_2$ laminate composites had the maximum impact value when fabricated at 1623K, accompanying the increase of fracture displacement and crack propagation energy. The interfacial shear strength of $Nb/MoSi_2-ZrO_2$ laminate composites increased with the growth of interfacial reaction layer, which resulted from the increase of fabricating temperature. there is an appropriate interfacial shear strength for the enhancement of impact value of $Nb/MoSi_2-ZrO_2$ laminate composites. A large increase of interfacial shear strength restrains the plastic deformation of Nb sheet.

  • PDF

Enhanced Performance of La0.6Sr0.4Co0.2Fe0.8O3-\delta (LSCF) Cathodes with Graded Microstructure Fabricated by Tape Casting

  • Nie, Lifang;Liu, Ze;Liu, Mingfei;Yang, Lei;Zhang, Yujun;Liu, Meilin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) powders with different particle sizes, synthesized through a citrate complexation method and a gel-casting technique, are used to fabricate porous LSCF cathodes with graded microstructures via tape casting. To create porous electrodes with desired porosity and pore structures, graphite and starch are used as pore former for different layers of the graded cathode. Examination of the microstructures of the as-prepared LSCF cathode using an SEM revealed that both grain size and porosity changed gradually from the catalytically active layer (near the electrodeelectrolyte interface) to the current collection layer (near the electrode-interconnect interface). Impedance analysis showed that a 3-layer LSCF cathode with graded microstructures exhibited much-improved performance compared to that of a single-layer LSCF cathode, corresponding to interfacial resistance of 0.053, 0.11, and 0.27 $\Omega{\cdot}cm^2$ at 800, 750, and $700^{\circ}C$ respectively.

Effect of Partial Pressure of the Reactant Gas on the Kinetic Model and Mechanical Properties of the Chemical Vapor Deposited Silicon Carbide (화학증착된 실리콘 카바이드 박막의 속도론적 모델 및 기계적 성질에 미치는 반응가스 분압의 영향)

  • 어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.429-436
    • /
    • 1991
  • Silicon carbide has been grown by a chemical vapor deposition (CVD) technique using CH3SiCl3 and H2 gaseous mixture onto a graphite substrate. Based on the thermodynamic equilibrium studies and the suggestion that the deposition rate of SiC is controlled by surface reaction theoretical kinetic equation for CVD of silicon carbide has been proposed. The proposed theoretical kinetic equation for CVD of silicon carbide agreed well with the experimental results for the variation of the deposition rate as a function of the partial pressure of reactant gases. The Vikers microhardness of the SiC layer was about 3000∼3400 kg/$\textrm{mm}^2$ at room temperature.

  • PDF

Controlling Work Function of Graphene by Chemical Doping

  • Lee, Ji-A
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.628-628
    • /
    • 2013
  • Graphene, a single layer of graphite, has raised extensive interest in a wide scientific community for its extraordinary thermal, mechanical, electrical and other properties [1,2]. However, because of zero-band gap of graphene, it is difficult to apply for electronic applications. To overcome this problem, chemical doping is one of way to opening grahene bandgap. According to experimental results, by changing doping concentration and doping time, it is possible to control work function of graphene. We can obtain results through raman spectroscopy, UPS, Sheet resistance. Moreover, electronic properties of doped graphene were studied by making field effect transistors. We were able to control the doping concentration, dirac point of graphene and work function of graphene by formng n-type, p-type doping materials. In this research, the chemicals of diazonium salts, viologen, etc. were used for extrinsic doping.

  • PDF