• 제목/요약/키워드: Graphite layer

검색결과 238건 처리시간 0.032초

CV흑연주철(黑鉛鑄鐵)에서의 표면응고층(表面凝固層) 생성(生成)에 관(關)한 연구(硏究) (A study on the formation of surface solidification layer in compacted/vermicular graphite cast iron)

  • 박기성;이상익;김수영
    • 한국주조공학회지
    • /
    • 제6권1호
    • /
    • pp.20-26
    • /
    • 1986
  • In order to investigate the solidification characteristics of CV. graphite cast iron, decantation technique and thermal analysis test were used. Solidification characteristics were studied in the specimens with various compositions and graphite shape. The results were as follows; 1. The first surface solidifcation layer is formed along the mold wall by the growth of austenite dendrites in hypoeutectic composition and thin solid film in hypereutectic composition. 2. The mushy degree of solidifcation of hypereutiectic composition is higher than that of hypoeutectic. 3. In hypoeutectic, the effect of change of the mushy degree of solidification on the graphite shape is small, however, in hypereutectic the mushy degree of solidification becomes higher in order of flake, CV, and spheroidal graphite cast iron.

  • PDF

주철의 가스질화침탄처리 (A Study on the Gaseous Nitrocarburising of Cast Irons)

  • 김영희;윤희재
    • 열처리공학회지
    • /
    • 제16권2호
    • /
    • pp.71-77
    • /
    • 2003
  • We investigate the phase formation in the compound layer of cast irons during the gaseous nitrocarburising of four different cast irons, that contain different types of graphites in the shape and size. We examine the change in the surface roughness with the nitrocarburising time. The observation of cross-sectional microstructure and X-ray diffraction analysis indicate that the compound layer consists of single ${\varepsilon}-Fe_{2-3}(N,C)$ phase and that its thickness increases in a parabolic manner with the treatment time. The surface roughness parameters, Rz and Ra increase with increasing treatment time. In other words, the roughness parameters increase as the thickness of compound layer increases. The parameters also depend on the shape and size of graphite in the individual cast irons.

Charge Doping in Graphene on Highly Polar Mica

  • 심지혜;고택영;류순민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.430-430
    • /
    • 2011
  • Graphene, one single atomic layer of graphite, has attracted extensive attention in various research fields since its first isolation from graphite. Application in the future electronics requires better understanding and manipulation of electronic properties of graphene supported on various solid substrates. Here, we present a study on charge doping and morphology of graphene prepared on atomically flat and highly polar mica substrates. Ultra-flat single-layer graphene was prepared by micro-exfoliation of graphite followed by deposition on cleaved mica substrates. Atomic force microscopy (AFM) revealed presence of ultra-thin water films formed in a layer-by-layer manner between graphene and mica substrates. Raman spectroscopy showed that a few angstrom-thick water films efficiently block electron transfer from graphene to mica. Hole doping in graphene caused by underlying mica substrates was also visualized by scanning Kelvin probe microscopy (SKPM).

  • PDF

화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조(II) (Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(II))

  • 윤영훈;최성철
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.21-29
    • /
    • 1999
  • 흑연 기판에 탄화규소 전환층을 형성하는데 있어서 기판의 밀도와 기공 크기 분포의 영향이 조사되었다. 전환층형성을 위한 화학 반응은 기판의 표면 또는 표면 하부에서 SiO 기체의 침투를 통해 이루어졌다. 전환 공정 동안 기판 표면에서의 충분한 양의 SiO 기체 침투 및 연속적인 화학반응에 요구되는 기공크기 분포는 1.0~10.0$\mu\textrm{m}$ 범위인 것으로 추정되엇다. 유한요소법에 의한 탄화규소 층의 응력 해석에서는 열적 불일치에 기인하는 잔류응력 분포를 나타냈다. 그러나. X-선 회절에 의해 탄화규소 층에서는 압축응력이 측정되었으며, 탄화규소 층에서의 잔류응력 분포에 대해 SiC 층과 흑연 기판간의 interlayer의 constraining 효과, 전환층의 치밀화 거동 및 입자성장에 의해 주로 영향받는 것으로 추정되었다.

  • PDF

Electrochemical double layer capacitors with PEO and Sri Lankan natural graphite

  • Jayamaha, Bandara;Dissanayake, Malavi A.K.L.;Vignarooban, Kandasamy;Vidanapathirana, Kamal P.;Perera, Kumudu S.
    • Advances in Energy Research
    • /
    • 제5권3호
    • /
    • pp.219-226
    • /
    • 2017
  • Electrochemical double layer capacitors (EDLCs) have received a tremendous interest due to their suitability for diverse applications. They have been fabricated using different carbon based electrodes including activated carbons, single walled/multi walled carbon nano tubes. But, graphite which is one of the natural resources in Sri Lanka has not been given a considerable attention towards using for EDLCs though it is a famous carbon material. On the other hand, EDLCs are well reported with various liquid electrolytes which are associated with numerous drawbacks. Gel polymer electrolytes (GPE) are well known alternative for liquid electrolytes. In this paper, it is reported about an EDLC fabricated with a nano composite polyethylene oxide based GPE and two Sri Lankan graphite based electrodes. The composition of the GPE was [{(10PEO: $NaClO_4$) molar ratio}: 75wt.% PC] : 5 wt.% $TiO_2$. GPE was prepared using the solvent casting method. Two graphite electrodes were prepared by mixing 85% graphite and 15% polyvinylidenefluoride (PVdF) in acetone and casting n fluorine doped tin oxide glass plates. GPE film was sandwiched in between the two graphite electrodes. A non faradaic charge discharge mechanism was observed from the Cyclic Voltammetry study. GPE was stable in the potential windows from (-0.8 V-0.8 V) to (-1.5 V-1.5 V). By increasing the width of the potential window, single electrode specific capacity increased. Impedance plots confirmed the capacitive behavior at low frequency region. Galvanostatic charge discharge test yielded an average discharge capacity of $0.60Fg^{-1}$.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

티타늄 용탕의 산화칼슘 및 흑연과의 반응 및 기포 결함의 형성에 미치는 압력의 영향 (The Reactions of the Ti Melt with CaO and Graphite and the Effect of Pressure on the Formation of Gas Porosity)

  • 배창근;권해욱
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.247-253
    • /
    • 2000
  • Titanium was melted in the CaO-coated alumina crucible and the reaction between the melt and the coating layer was negligible. The volume fraction of the gas porosity was decreased with increasing pressure and the sound bar castings with no porosity was obtained under the Ar atmosphere of the pressure of $300kN/mm^2$. The surface of the casting obtained from CaO-coated graphite mold was slightly rougher than that from graphite without coating. The reaction product of titanium melt with the layer of CaO was mainly titanium oxide and that with graphite crucible was titanium cabide with small amount of titanium nitride.

  • PDF

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

SiC 증착층 계면의 표면조도에 미치는 흑연 기판의 표면조도 영향 (Effects of the Surface Roughness of a Graphite Substrate on the Interlayer Surface Roughness of Deposited SiC Layer)

  • 박지연;정명훈;김대종;김원주
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.122-126
    • /
    • 2013
  • The surface roughness of the inner and outer surfaces of a tube is an important requirement for nuclear fuel cladding. When an inner SiC clad tube, which is considered as an advanced Pressurized Water Cooled Reactor (PWR) clad with a three-layered structure, is fabricated by Chemical Vapor Deposition (CVD), the surface roughness of the substrate, graphite, is an important process parameter. The surface character of the graphite substrate could directly affect the roughness of the inner surface of SiC deposits, which is in contact with a substrate. To evaluate the effects of the surface roughness changes of a substrate, SiC deposits were fabricated using different types of graphite substrates prepared by the following four polishing paths and heat-treatment for purification: (1) polishing with #220 abrasive paper (PP) without heat treatment (HT), (2) polishing with #220 PP with HT, (3) #2400 PP without HT, (4) polishing with #2400 PP with HT. The average surface roughnesses (Ra) of each deposited SiC layer are 4.273, 6.599, 3.069, and $6.401{\mu}m$, respectively. In the low pressure SiC CVD process with a graphite substrate, the removal of graphite particles on the graphite surface during the purification and the temperature increasing process for CVD seemed to affect the surface roughness of SiC deposits. For the lower surface roughness of the as-deposited interlayer of SiC on the graphite substrate, the fine controlled processing with the completed removal of rough scratches and cleaning at each polishing and heat treating step was important.

흑연 금형 표면 보호용 PCS 코팅층의 열경화에 의한 조성비 조절 특성 연구 (Study on the Compositional Characteristics of the PCS Coating Layer by Curing Treatment for the Protection of Graphite Mold Surface)

  • 김경호;이윤주;신윤지;정성민;이명현;배시영
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.293-299
    • /
    • 2020
  • The characteristics of the polycarbosilane (PCS)-based composite ceramic layer was studied by controlling the curing temperature. The stress at the interface of the graphite and SiOC composite layer was evaluated v ia finite element analysis. As a result, the tensile stress was released as the carbon ratio of the SiC decreases. In experiment, the SiOC layers were coated on the VDR graphite block by dip-coating process. It was revealed that the composition of Si and C was effectively adjusted depending on the curing temperature. As the solution-based process is employed, the surface roughness was reduced for the appropriate PCS curing temperature. Hence, it is expected that the cured SiOC layer can be utilized to reduce cracking and peeling of SiC ceramic composites on graphite mold by improving the interfacial stress and surface roughness.