• Title/Summary/Keyword: Graphics processing unit

Search Result 191, Processing Time 0.025 seconds

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Improving the Rendering Speed of 3D Model Animation on Smart Phones

  • Ng, Cong Jie;Hwang, Gi-Hyun;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.266-270
    • /
    • 2011
  • The advancement of technology enables smart phones or handheld devices to render complex 3D graphics. However, the processing power and memory of smart phones remain very limited to render high polygon and details 3D models especially on games which requires animation, physic engine, or augmented reality. In this paper, several techniques will be introduced to speed up the computation and reducing the number of vertices of the 3D meshes without losing much detail.

Accelerating Fingerprint Enhancement Algorithm on GPGPU using OpenCL (OpenCL을 이용한 GPGPU 기반 지문개선 알고리즘 가속화)

  • Kim, Daehee;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.666-672
    • /
    • 2016
  • Recently the fingerprint is widely used as one of biometrics to improve the security of financial mobile applications, because of its user convenience and high recognition rate. However, in order to apply fingerprint algorithms to finance and security applications, the recognition rate and processing speed of the fingerprint algorithms have to be improved further. In this paper, we propose the parallel fingerprint enhancement algorithm on general-purpose computing on graphics processing unit (GPGPU) using OpenCL. We discuss the analysis of the parallelism in the fingerprint algorithm as well as the exploration of optimization parameters of the parallel fingerprint algorithm to improve the performance. The experimental results showed that the execution of parallel fingerprint enhancement algorithm on GPGPUs was accelerated from 29.4 upto 69.2 times compared with the execution of the original one on the host CPUs.

3D Inspection by Registration of CT and Dual X-ray Images

  • Kim, Youngjun;Kim, Wontae;Lee, Deukhee
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Computed tomography (CT) can completely digitize the interior and the exterior of nearly any object without any destruction. Generally, the resolution for industrial CT is below a few microns. The industrial CT scanning, however, has a limitation because it requires long measuring and processing time. Whereas, 2D X-ray imaging is fast. In this paper, we propose a novel concept of 3D non-destructive inspection technique using the advantages of both micro-CT and dual X-ray images. After registering the master object’s CT data and the sample objects’ dual X-ray images, 3D non-destructive inspection is possible by analyzing the matching results. Calculation for the registration is accelerated by parallel computing using graphics processing unit (GPU).

Optimized Construction and Visualization of GPU-based Adaptive and Continuous Signed Distance Field, and Its Applications (GPU기반 적응형 및 연속적인 부호 거리장의 최적화된 구성과 시각화, 그리고 그 응용 사례)

  • Moon, Seong-Hyeok;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.655-658
    • /
    • 2021
  • 본 논문에서는 GPU 아키텍처를 이용하여 적응형 부호 거리장을 최적화하여 빠르게 구축하고 시각화 할 수 있는 방법에 대해 제안한다. 쿼드트리를 효율적으로 GPU 메모리로 전달하고, 이를 활용하여 삼각형에 대해 유클리디안 거리를 각 스레드 별로 병렬처리하여 최단 거리를 찾는다. 이 과정에서 GPU를 사용하여 삼각형으로 구성된 3D 메쉬로부터 빠르게 적응형 부호 거리장을 계산할 수 있는 최적화 기법과 절단면 보기, 특정 위치의 값 조회, 실시간 레이트레이싱 및 충돌처리 작업을 빠르고 효율적으로 수행할 수 있는지를 보여준다. 또한, 제안하는 프레임워크를 활용하면 하이 폴리곤 메쉬도 1초 내외로 부호 거리장을 계산할 수 있기 때문에 강체뿐만 아니라 변형체에도 충분히 활용될 수 있다.

  • PDF

Analyzing delay of Kernel function owing to GPU memory input from multiple VMs in RPC-based GPU virtualization environments (RPC 기반 GPU 가상화 환경에서 다중 가상머신의 GPU 메모리 입력으로 인한 커널 함수의 지연 문제 분석)

  • Kang, Jihun;Kim, Soo Kyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.541-542
    • /
    • 2021
  • 클라우드 컴퓨팅 환경에서는 고성능 컴퓨팅을 지원하기 위해 사용자에게 GPU(Graphic Processing Unit)가 할당된 가상머신을 제공하여 사용자가 고성능 응용을 실행할 수 있도록 지원한다. 일반적인 컴퓨팅 환경에서 한 명의 사용자가 GPU를 독점해서 사용하기 때문에 자원 경쟁으로 인한 문제가 상대적으로 적게 발생하지만 독립적인 여러 사용자가 컴퓨팅 자원을 공유하는 클라우드 환경에서는 자원 경쟁으로 인해 서로 성능 영향을 미치는 문제를 발생시킨다. 본 논문에서는 여러 개의 가상머신이 단일 GPU를 공유하는 RPC(Remote Procedure Call) 기반 GPU 가상화 환경에서 다수의 가상머신이 GPGPU(General Purpose computing on Graphics Processing Units) 작업을 수행할 때 GPU 메모리 입력 경쟁으로 인해 발생하는 커널 함수의 실행 지연 문제를 분석한다.

  • PDF

Implementation of handwritten digit recognition CNN structure using GPGPU and Combined Layer (GPGPU와 Combined Layer를 이용한 필기체 숫자인식 CNN구조 구현)

  • Lee, Sangil;Nam, Kihun;Jung, Jun Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.165-169
    • /
    • 2017
  • CNN(Convolutional Nerual Network) is one of the algorithms that show superior performance in image recognition and classification among machine learning algorithms. CNN is simple, but it has a large amount of computation and it takes a lot of time. Consequently, in this paper we performed an parallel processing unit for the convolution layer, pooling layer and the fully connected layer, which consumes a lot of handling time in the process of CNN, through the SIMT(Single Instruction Multiple Thread)'s structure of GPGPU(General-Purpose computing on Graphics Processing Units).And we also expect to improve performance by reducing the number of memory accesses and directly using the output of convolution layer not storing it in pooling layer. In this paper, we use MNIST dataset to verify this experiment and confirm that the proposed CNN structure is 12.38% better than existing structure.

Evaluation of GPU Computing Capacity for All-in-view GNSS SDR Implementation

  • Yun Sub, Choi;Hung Seok, Seo;Young Baek, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2023
  • In this study, we design an optimized Graphics Processing Unit (GPU)-based GNSS signal processing technique with the goal of designing and implementing a GNSS Software Defined Receiver (SDR) that can operate in real time all-in-view mode under multi-constellation and multi-frequency signal environment. In the proposed structure the correlators of the existing GNSS SDR are processed by the GPU. We designed a memory structure and processing method that can minimize memory access bottlenecks and optimize the GPU memory resource distribution. The designed GNSS SDR can select and operate only the desired GNSS or desired satellite signals by user input. Also, parameters such as the number of quantization bits, sampling rate, and number of signal tracking arms can be selected. The computing capability of the designed GPU-based GNSS SDR was evaluated and it was confirmed that up to 2400 channels can be processed in real time. As a result, the GPU-based GNSS SDR has sufficient performance to operate in real-time all-in-view mode. In future studies, it will be used for more diverse GNSS signal processing and will be applied to multipath effect analysis using more tracking arms.

Implementing Efficient Camera ISP Filters on GPGPUs Using OpenCL (GPGPU 기반의 효율적인 카메라 ISP 구현)

  • Park, Jongtae;Facchini, Beron;Hong, Jingun;Burgstaller, Bernd
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.1784-1787
    • /
    • 2010
  • General Purpose Graphic Processing Unit (GPGPU) computing is a technique that utilizes the high-performance many-core processors of high-end graphic cards for general-purpose computations such as 3D graphics, video/image processing, computer vision, scientific computing, HPC and many more. GPGPUs offer a vast amount of raw computing power, but programming is extremely challenging because of hardware idiosyncrasies. The open computing language (OpenCL) has been proposed as a vendor-independent GPGPU programming interface. OpenCL is very close to the hardware and thus does little to increase GPGPU programmability. In this paper we present how a set of digital camera image signal processing (ISP) filters can be realized efficiently on GPGPUs using OpenCL. Although we found ISP filters to be memory-bound computations, our GPGPU implementations achieve speedups of up to a factor of 64.8 over their sequential counterparts. On GPGPUs, our proposed optimizations achieved speedups between 145% and 275% over their baseline GPGPU implementations. Our experiments have been conducted on a Geforce GTX 275; because of OpenCL we expect our optimizations to be applicable to other architectures as well.