This paper focus on the development of object-oriented model bases for Structured Modeling. For the model base organization, object modeling techniques and model typing concept which is similar to data typing concept are used. Structured modeling formalizes the notion of a definitional system as a way of dscribing models. From the object-oriented concept, a structured model can be represented as follows. Each group of similar elements(genus) is represented by a composite class. Other type of genera can be represented in a similar manner. This hierarchical class composition gives rise to an acyclic class-composition graph which corresponds with the genus graph of structured model. Nodes in this graph are instantiated to represent the elemental graph for a specific model. Taking this class composition process one step further, we aggregate the classes into higher-level composite classes which would correspond to the structured modeling notion of a module. Finally, the model itself is then represented by a composite class having attributes each of whose domain is a composite class representing one of the modules. The resulting class-composition graph represent the modular tree of the structured.
The goal of data mining is to extract new and useful knowledge from large scale datasets. As the amount of available data grows explosively, it became vitally important to develop faster data mining algorithms for various types of data. Recently, an interest in developing data mining algorithms that operate on graphs has been increased. Especially, mining frequent patterns from structured data such as graphs has been concerned by many research groups. A graph is a highly adaptable representation scheme that used in many domains including chemistry, bioinformatics and physics. For example, the chemical structure of a given substance can be modelled by an undirected labelled graph in which each node corresponds to an atom and each edge corresponds to a chemical bond between atoms. Internet can also be modelled as a directed graph in which each node corresponds to an web site and each edge corresponds to a hypertext link between web sites. Notably in bioinformatics area, various kinds of newly discovered data such as gene regulation networks or protein interaction networks could be modelled as graphs. There have been a number of attempts to find useful knowledge from these graph structured data. One of the most powerful analysis tool for graph structured data is frequent subgraph analysis. Recurring patterns in graph data can provide incomparable insights into that graph data. However, to find recurring subgraphs is extremely expensive in computational side. At the core of the problem, there are two computationally challenging problems. 1) Subgraph isomorphism and 2) Enumeration of subgraphs. Problems related to the former are subgraph isomorphism problem (Is graph A contains graph B?) and graph isomorphism problem(Are two graphs A and B the same or not?). Even these simplified versions of the subgraph mining problem are known to be NP-complete or Polymorphism-complete and no polynomial time algorithm has been existed so far. The later is also a difficult problem. We should generate all of 2$^n$ subgraphs if there is no constraint where n is the number of vertices of the input graph. In order to find frequent subgraphs from larger graph database, it is essential to give appropriate constraint to the subgraphs to find. Most of the current approaches are focus on the frequencies of a subgraph: the higher the frequency of a graph is, the more attentions should be given to that graph. Recently, several algorithms which use level by level approaches to find frequent subgraphs have been developed. Some of the recently emerging applications suggest that other constraints such as connectivity also could be useful in mining subgraphs : more strongly connected parts of a graph are more informative. If we restrict the set of subgraphs to mine to more strongly connected parts, its computational complexity could be decreased significantly. In this paper, we present an efficient algorithm to mine frequent subgraphs that are more strongly connected. Experimental study shows that the algorithm is scaling to larger graphs which have more than ten thousand vertices.
XML에 대한 질의 언어는 데이타 그래프 내의 경로를 이용하여 질의를 표현한다. 특히, 경로에 패턴 (예를 들어, 정규식)을 사용함으로써, 데이타의 구조를 정확히 알지 못하더라도 질의가 가능하도록 한다. 이때, 패턴을 이용하는 질의는 데이타 그래프의 탐색범위를 크게 넓히게 된다. 기존의 XML색인 기법은 질의의 탐색범위를 줄이기 위해 데이타 그래프 내의 서로 동일한 경로들을 하나로 묶어 작은 크기의 색인 그래프를 생성하는 방법을 이용한다. 하지만 이러한 색인들은 많은 경우 색인의 크기가 데이터 그래프의 크기만큼 증가하게 되어 질의의 탐색범위를 줄이지 못하고, 따라서 효율적인 질의 처리를 보장하지 못한다. 본 논문에서는 데이타 내에 존재하는 모든 경로를 분할(partitioning)하고 질의 처리 시 질의에 맞는 분할 영역을 빠르게 찾아낼 수 있는 색인 그래프를 제안한다. 본 논문에서 제안하는 색인 그래프는 데이터 그래프의 크기와 상관없이 색인 그래프의 크기를 조절할 수 있다. 따라서 색인 그래프의 크기를 작게 구성함으로써 색인 그래프 탐색 비용을 크게 줄일 수 있다. 본 논문에서는, 실험을 통해 기존의 그래프 기반색인 기법들보다 본 논문의 색인 기법이 보다 효율적임을 보이고 색인의 크기 변화에 따른 성능 변화에 대해 알아본다.
최근 소셜 네트워크, 시맨틱 웹 등 여러 분야에서 그래프 구조 데이터가 널리 사용됨에 따라 대량의 그래프 데이터에 대한 효과적이고 효율적인 검색 방법의 필요성이 커지고 있다. 기존 키워드 기반 검색 방법들은 대부분 주어진 질의에 대한 연관도만을 고려하여 결과를 구한다. 그러나 이런 방법은 질의 연관도는 높지만 콘텐트 노드들을 공유하는 유사한 결과들이 함께 선택될 가능성이 높다. 이런 문제점을 개선하기 위해 본 논문에서는 키워드 질의에 대한 답 트리에 포함된 콘텐트 노드들의 유사성을 제어하여 콘텐트 노드가 다양한 답 트리들을 구하는 top-k 검색 방법을 제안한다. 다양한 답 트리 집합의 기준을 정의하고, 다양한 top-k 결과 집합을 구하기 위한 두 가지 방법으로 점진적 나열 알고리즘과 A⁎ 탐색 기법을 이용한 휴리스틱 탐색 알고리즘을 설계한다. 또 휴리스틱 탐색의 성능을 높이기 위한 개선 방법을 제시한다. 실 데이터를 이용한 성능 실험 결과를 통해, 본 논문에서 제안한 휴리스틱 탐색 방법이 질의 연관성뿐만 아니라 콘텐트 노드들의 상이도가 높은 다양한 답 트리들을 효율적으로 구할 수 있음을 보인다.
International Journal of Knowledge Content Development & Technology
/
제14권4호
/
pp.101-111
/
2024
Multilingual Knowledge Graphs (MKGs) have emerged as a crucial component in various natural language processing tasks, enabling efficient representation and utilization of structured knowledge across multiple languages. One can get data, information, and knowledge from various sectors, like libraries, archives, institutional repositories, etc. Variable quality of metadata, multilingualism, and semantic diversity make it a challenge to create a digital library and multilingual search facility. To accept these challenges, there is a need to design a framework to integrate various structured and unstructured data sources for integration, unification, and sharing databases. These are controlled using linked data and semantic web approaches. In future, multilingual knowledge graph overcomes all the linguistic nuances, technical barriers like semantic interoperability, data harmonization etc and enhance cooperation and collaboration throughout the world. Through a comprehensive analysis of the current state-of-the-art techniques and ongoing research efforts, this paper aims to offer insights into the future directions and potential advancements in the field of Multilingual Knowledge Graphs. This paper deals with a multilingual knowledge graph and how to build up a multilingual knowledge graph. It also focuses on the various challenges and opportunities for designing multilingual knowledge graphs.
In recent years, graph neural networks (GNNs) have been extensively used to analyze graph data across various domains because of their powerful capabilities in learning complex graph-structured data. However, recent research has focused on improving the performance of a single GNN with only two or three layers. This is because stacking layers deeply causes the over-smoothing problem of GNNs, which degrades the performance of GNNs significantly. On the other hand, ensemble methods combine individual weak models to obtain better generalization performance. Among them, gradient boosting is a powerful supervised learning algorithm that adds new weak models in the direction of reducing the errors of the previously created weak models. After repeating this process, gradient boosting combines the weak models to produce a strong model with better performance. Until now, most studies on GNNs have focused on improving the performance of a single GNN. In contrast, improving the performance of GNNs using multiple GNNs has not been studied much yet. In this paper, we propose gradient boosted graph neural networks (GBGNN) that combine multiple shallow GNNs with gradient boosting. We use shallow GNNs as weak models and create new weak models using the proposed gradient boosting-based loss function. Our empirical evaluations on three real-world datasets demonstrate that GBGNN performs much better than a single GNN. Specifically, in our experiments using graph convolutional network (GCN) and graph attention network (GAT) as weak models on the Cora dataset, GBGNN achieves performance improvements of 12.3%p and 6.1%p in node classification accuracy compared to a single GCN and a single GAT, respectively.
정보화 사회에서 많은 문서가 전자화 됨에 따라 효율적인 처리를 위해 구조화된 전자 문서 처리가 요구되고 있다. 이에 SGML은 구조화된 정보를 생성하고 교환하기 위한 문서 표준으로써, 이러한 전자 문서를 보여주고 수정하며 새로운 문서를 생성하기에 알맞다. 이에 따라 대량의 구조화된 SGML 문서 정보의 저장, 관리에 관한 연구가 필요하다. 본 논문은 HyTime(Hypermedia Time-based Structuring Language)에서 정의된 GROVE(Graph Representation Of property ValuEs)를 이용하여 데이터 모델링 설계 및 SGML 문서 저장 관리 시스템 설계에 대해 기술한다.
본 논문에서는 XML 데이터와 같은 비구조적인 데이터 처리와 추론을 필요로 하는 의미 웹(semantic web) 구축에 유리한 연역 객체 지향 데이터베이스(Deductive and Object-oriented Database) 언어구현을 통해 XML 데이터 처리에 대해 알아본다. 대량 문서 관리와 데이터 교환에 가장 유용한 마크업 언어로 알려진 XML을 이용하여 XML 데이터 모델을 연역객체지향 데이터베이스 모델로 바꾸는 방법에 대해 알아본 다음 이 연역객체 지향 데이터베이스를 다시 Connection Graph로 바꾸고 Connection Graph Resolution을 이용하여 어떻게 질의에 답할 수 있는지를 기술한다. 또한 데이터베이스 내의 계층 지식을 이용하여 효율적이면서도 같은 답을 주는 질의로 바꾸는 방법을 제시하고 이 방법이 효율적이며 논리적으로 타당하다는 점을 증명한다.
최근 소셜 네트워크, 시맨틱 웹, 바이오 인포매틱스 등 여러 응용 분야에서 그래프 구조를 갖는 대용량 데이터들에 활용됨에 따라 이런 데이터들에 대한 키워드 기반 검색 방법이 많은 관심을 받고 있다. 본 논문에서는 그래프 구조 데이터에 대한 키워드 질의에 대해 질의와 연관성이 높으면서 구조적인 중복성을 갖지 않는 top-k 결과 집합을 효율적으로 검색하는 방법을 제안한다. 키워드 질의에 대한 비-중복적인 결과 트리 구조와 그것의 연관도 척도를 정의하고, 그래프 내에 포함된 유용한 경로 정보들에 대한 효과적인 인덱싱 방법을 제안한다. 그리고 기 생성된 인덱스를 활용하여 주어진 키워드 질의에 대해 비-중복적이면서 연관도가 큰 top-k 결과 집합을 생성하는 효율적인 질의 처리 알고리즘을 제시한다. 실 데이터를 이용한 실험을 통해 제안한 방법의 효과와 성능을 기존 방법과 비교 분석한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권5호
/
pp.2211-2232
/
2018
The unstructured and semi-structured big data in social network poses new challenges in query retrieval. This requirement needs to be met by introducing quality retrieval time measures like indexing. Due to the huge volume of data storage, there originate the need for efficient index algorithms to promote query processing. However, conventional algorithms fail to index the huge amount of frequently obtained information in real time and fall short of providing scalable indexing service. In this paper, a new LIndex algorithm, which is a heuristic on Lucene is built on Neo4jHA architecture that holds the social network Big data. LIndex is a flexible and simplified adaptive indexing scheme that ascendancy decomposed shortest paths around term neighbors as basic indexing unit. This newfangled index proves to be effectual in query space pruning of graph database Neo4j, scalable in index construction and deployment. A graph query is processed and optimized beyond the traditional Lucene in a time-based manner to a more efficient path method in LIndex. This advanced algorithm significantly reduces query fetch without compromising the quality of results in time. The experiments are conducted to confirm the efficiency of the proposed query retrieval in Neo4j graph NoSQL database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.