• Title/Summary/Keyword: Graph theory

Search Result 391, Processing Time 0.029 seconds

A Collision detection from division space for performance improvement of MMORPG game engine (MMORPG 게임엔진의 성능개선을 위한 분할공간에서의 충돌검출)

  • Lee, Sung-Ug
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.567-574
    • /
    • 2003
  • Application field of third dimension graphic is becoming diversification by the fast development of hardware recently. Various theory of details technology necessary to design game such as 3D MMORPG (Massive Multi-play Online Role Flaying Game) that do with third dimension. Cyber city should be absorbed. It is the detection speed that this treatise is necessary in game engine design. 3D MMORPG game engine has much factor that influence to speed as well as rendering processing because it express huge third dimension city´s grate many building and individual fast effectively by real time. This treatise nay get concept about the collision in 3D MMORPG and detection speed elevation of game engine through improved detection method. Space division is need to process fast dynamically wide outside that is 3D MMORPG´s main detection target. 3D is constructed with tree construct individual that need collision using processing geometry dataset that is given through new graph. We may search individual that need in collision detection and improve the collision detection speed as using hierarchical bounding box that use it with detection volume. Octree that will use by division octree is used mainly to express rightly static object but this paper use limited OSP by limited space division structure to use this in dynamic environment. Limited OSP space use limited space with method that divide square to classify typically complicated 3D space´s object. Through this detection, this paper propose follow contents, first, this detection may judge collision detection at early time without doing all polygon´s collision examination. Second, this paper may improve detection efficiency of game engine through and then reduce detection time because detection time of bounding box´s collision detection.

A Comparative Study of Fuzzy Based Frequency Ratio and Cosine Amplitude Method for Landslide Susceptibility in Jinbu Area (빈도비와 Cosine Amplitude Method를 이용한 진부지역의 퍼지기반 산사태 취약성 예측기법 비교 연구)

  • Kim, Kang Min;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.195-214
    • /
    • 2017
  • Statistical landslide susceptibility analysis, which is widely used among various landslide susceptibility analysis approaches, predicts the unstable area by analyzing statistical relationship between landslide occurrence locations and landslide controlling factors. However, uncertainties are involved in the procedures of the susceptibility analysis and therefore, fuzzy approach has been used to deal properly with uncertainties. The fuzzy approach used fuzzy set theory and fuzzy membership function to quantify uncertainties involved in landslide controlling factors. Various fuzzy approaches were suggested in the procedure of the membership value determination and fuzzy operation in the previous researches. However, few studies were carried out to compare the analysis results obtained from various approaches for membership function determination and fuzzy operation. Therefore, in this study, the authors selected Jinbu area, which a large number of landslides were occurred at in 2006, to apply two most commonly used methods, the frequency ratio and the cosine amplitude method to derive membership values for each controlling factor. In addition, the integration of different thematic layers to produce landslide susceptibility map was performed by several fuzzy operators such as AND, OR, algebraic product, algebraic sum and Gamma operator. The results of the landslide susceptibility analysis using two different methods for the determination of fuzzy membership values and various fuzzy operators were compared on the basis of ROC graph to check the feasibility of the fuzzy based landslide susceptibility analysis.

Optimal valve installation of water distribution network considering abnormal water supply scenarios (비정상 물공급 시나리오를 고려한 상수도관망 최적 밸브위치 결정)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.719-728
    • /
    • 2019
  • Valve in water distribution network (WDN), that controls the flow in pipes, is used to isolate a segment (a part of WDN) under abnormal water supply conditions (e.g., pipe breakage, water quality failure event). The segment isolation degrades pressure and water serviceability in neighboring area during the water service outage of the segment. Recent hydraulic and water quality failure events reported encouraging WDN valve installation based on various abnormal water supply scenarios. This study introduces a scenario-based optimal valve installation approach to optimize the number of valves, the amount of undelivered water, and a shortest water supply path indicator (i.e., Hydraulic Geodesic Index). The proposed approach is demonstrated in the valve installation of Pescara network, and the optimal valve sets are obtained under multiple scenarios and compared to the existing valve set. Pressure-driven analysis (PDA) scheme is used for a network hydraulic simulation. The optimal valve set derived from the proposed method has 19 fewer valves than the existing valve set in the network and the amount of undelivered water was also lower for the optimal valve set. Reducing the reservoir head requires a greater number of valves to achieve the similar functionality of the WDN with the optimal valve set of the original reservoir head. This study also compared the results of demand-driven analysis (DDA) and the PDA and confirmed that the latter is required for optimal valve installation.

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Computation of Maintainability Index Using SysML-Based M&S Technique for Improved Weapon Systems Development (SysML 기반 모델링 및 시뮬레이션 기법을 활용한 무기체계 정비도 지수 산출)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.88-95
    • /
    • 2018
  • Maintainability indicates how easily a system can be restored to the normal state when a system failure occurs. Systems developed to have high maintainability can be competitive due to reduced maintenance time, workforce and resources. Quantification of the maintainability is possible in many ways, but only after prototype production or with historical data. As such, the graph theory and 3D model data have been used, but there are limitations in management efficiency and early use. To solve this problem, we studied the maintainability index of weapon systems using SysML-based modeling and simulation technique. A SysML structure diagram was generated to simultaneously model the system design and maintainability of system components by reflecting the maintainability attributes acquired from the system engineering tool. Then, a SysML parametric diagram was created to quantify the maintainability through simulation linked with MATLAB. As a result, an integrated model to account for system design and maintainability simultaneously has been presented. The model can be used from early design stages to identify components with low maintainability index. The design of such components can be changed to improve maintainability and thus to reduce the risks of cost overruns and time delays due to belated design changes.

Assessing Conservation Priority of Private Land in Unexecuted Urban Parks in Seoul Using Betweenness Centrality Analysis (매개중심성 분석을 활용한 서울시 미집행공원 내 사유지 보전 우선순위 평가)

  • Hwang, Byungmook;Ko, Dongwook W.;Kang, Wanmo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.22-34
    • /
    • 2021
  • The implementation of the sunset provision of unexecuted urban parks in Seoul has been postponed; however, the mentioned parks still remain vulnerable since they can be subject to development under certain circumstances. Local governments may purchase the parks to prevent their loss but are constrained due to limited resources. The purpose of this study is to prioritize the purchase of unexecuted urban parks in Seoul based on landscape connectivity, which represents the important role of allowing the movement of wildlife and providing biodiversity in urban environments. In this study, we used four potential scenarios (PB100, PB1, PA100, PA1), which reflects the degree of land cover change resulting from the implementation of the sunset provision, and the role of Han River as a conduit or barrier for wildlife movement. Landscape connectivity was evaluated by calculating current flow betweenness centrality (CFBC). This was used to rank the importance of the unexecuted urban parks in Seoul. The results demonstrated that the implementation of the sunset provision will greatly decrease the connectivity of all parks in Seoul and particularly more so for parks in the southern part of the city. In addition, the results suggested that the low connectivity of Han river will diminish the connectivity around Bukhansan Mountain in the northern part of Seoul. Our study can be used for the prioritization of purchase, since it has the ability to evaluate the anticipated vulnerability of each park's connectivity after the sunset provision.

A new approach to design isolation valve system to prevent unexpected water quality failures (수질사고 예방형 상수도 관망 밸브 시스템 설계)

  • Park, Kyeongjin;Shin, Geumchae;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1211-1222
    • /
    • 2022
  • Abnormal condition inevitably occurs during operation of water distribution system (WDS) and requires the isolation of certain areas using isolation valves. In general, the determination of the optimal location of isolation valves considered minimization of hydraulic failures as isolation of certain areas causes a change in hydraulic states (e.g., flow direction, velocity, pressure, etc.). Water quality failure can also be induced by changes in hydraulics, which have not been considered for isolation valve system design. Therefore, this study proposes a new isolation valve system design methodology to prevent unexpected water quality failure events. The new methodology considers flow direction change ratio (FDCR), which accounts for flow direction changes after isolation of the area, as a constraint while reliability is used as the objective function. The optimal design model has been applied to a synthetic grid network and the results are compared with the traditional design approach. Results show that considering FDCR can eliminate flow direction changes while average pressure and coefficient of variation of pressure, velocity, and hydraulic geodesic index (HGI) outperform compared to the traditional design approach. The proposed methodology is expected to be a useful approach to minimizing unexpected consequences by traditional design approaches.

Analysis of Plants Social Network on Island Area in the Korean Peninsula (한반도 도서지역의 식물사회네트워크 분석)

  • Sang-Cheol Lee;Hyun-Mi Kang;Seok-Gon Park
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • This study aimed to understand the interrelationships between tree species in plant communities through Plant Social Network (PSN) analysis using a large amount of vegetation data surveyed in an island area belonging to a warm-temperate boreal forest. The Machilus thunbergii, Castanopsis sieboldii, and Ligustrum japonicum, which belong to the canopy layer, Pittosporum tobira and Ardisia japonica, which belong to the shrub layer and Trachelospermum asiaticum and Stauntonia hexaphylla, which belong to the vines, appearing in evergreen broad-leaved climax forest community, showed strong positive association(+) with each other. These tree species had a negative association or no friendly relationship with deciduous broad-leaved species due to the large difference in location environments. Divided into 4 group modularizations in the PSN sociogram, evergreen broad-leaved tree species in Group I and deciduous broad-leaved tree species in Group II showed high centrality and connectivity. It was analyzed that the arrangement of tree species (nodes) and the degree of connection (grouping) of the sociogram can indirectly estimate environmental factors and characteristics of plant communities like DCA. Tree species with high centrality and influence in the PSN included T. asiaticum, Eurya japonica, Lindera obtusiloba, and Styrax japonicus. These tree species are common with a wide range of ecological niches and appear to have the characteristics and survival strategies of opportunistic species that commonly appear in forest gaps and damaged areas. They will play a major role in inter-species interactions and structural and functional changes in plant communities. In the future, long-term research and in-depth discussions are needed to determine how these species actually influence plant community changes through interactions

Brain Metabolic Network Redistribution in Patients with White Matter Hyperintensities on MRI Analyzed with an Individualized Index Derived from 18F-FDG-PET/MRI

  • Jie Ma;Xu-Yun Hua;Mou-Xiong Zheng;Jia-Jia Wu;Bei-Bei Huo;Xiang-Xin Xing;Xin Gao;Han Zhang;Jian-Guang Xu
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.986-997
    • /
    • 2022
  • Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.

A Narrative Literature Review on the Neural Substrates of Cognitive Reserve: Focusing on the Resting-state Functional Magnetic Resonance Imaging Studies (인지예비능의 신경적 기질에 대한 서술적 문헌고찰 연구 : 휴지기 기능적 자기공명영상 연구를 중심으로)

  • Hyeonsang Shin;Woohyun Seong;Bo-in Kwon;Yeonju Woo;Joo-Hee Kim;Dong Hyuk Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Cognitive reserve (CR) is a concept that can explain the discrepancies between the pathologic burden of the disease and clinical manifestations. It refers to the individual susceptibility to age-related brain changes and pathologies related to Alzheimer's disease, thus recognized as a factor affecting the trajectories of the disease. The purpose of this study was to explore the current states of clinical studies on neural substrates of CR in Alzheimer's disease using functional magnetic resonance imaging. We searched for clinical studies on CR using fMRI in the Pubmed, Cochrane library, RISS, KISS and ScienceON on August 14, 2023. Once the online search was finished, studies were selected manually by the inclusion criteria. Finally, we analyzed the characteristics of selected articles and reviewed the neural substrates of CR. Total thirty-four studies were included in this study. As surrogate markers of CR, not only education and occupational complexity, but also composite score and questionnaire-based method, which cover various areas of life, were mainly used. The most utilized methods in resting-state fMRI were independent component analysis, seed-based analysis, and graph theory analysis. Through the analysis, we demonstrated that neuroimaging techniques could capture the neural substrates associated with cognitive reserve. Moreover, functional connectivity of brain regions centered on prefrontal and parietal cortex and network areas such as default mode network showed a significant correlation with CR, which indicated a significant association with cognitive performance. CR may induce differential effects according to the disease status. We hope that this perspective on cognitive reserve would be helpful when conducting clinical researches on the mechanisms of traditional Korean medicine for Alzheimer's disease in the future.