본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.
This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.
본 논문에서는 그래프 신경망을 이용한 수동소나 신호 분류 알고리즘을 제안한다. 제안하는 알고리즘은 스펙트로그램을 영상 패치로 분할하고, 인접 거리의 영상 패치 간 연결을 통해 그래프를 표현한다. 이후, 표현된 그래프를 이용하여 그래프 합성곱 신경망을 학습하고 신호를 분류한다. 공개된 수중 음향 데이터를 이용한 실험에서 제안된 알고리즘은 스펙트로그램의 선 주파수 특징을 그래프 형태로 표현하며, 92.50 %의 우수한 분류 정확도를 갖는다. 이러한 결과는 기존의 합성곱 신경망과 비교하여 8.15 %의 높은 분류 정확도를 갖는다.
시간-공간적 의존성을 모두 고려하는 방법으로 그래프 신경망과 순환 신경망을 함께 사용하는 연구가 많이 진행되고 있다. 특히 그래프 신경망은 새롭게 활발히 연구되고 있는 분야이다. 서울시 자전거 대여 서비스(일명 따릉이)는 서울시 곳곳에 대여소를 갖추고 있으며 각 대여소에서 대여 정보가 충실하게 기록되어 있는 시계열 자료이다. 각 대여소의 대여 정보는 시간에 따른 주기성을 보이는 시간적인 특성을 갖추고 있으며, 지역적인 특성도 대여 현황에 큰 영향을 미치리라고 생각된다. 지역적 상관관계는 그래프 신경망을 이용하여 잘 이해할 수 있다. 이 연구에서는 서울시 자전거 대여 서비스의 시계열 데이터를 그래프로 재구성하고 그래프 신경망과 순차 신경망을 결합한 대여 예측 모델을 개발하였다. 시간에 따른 주기성과 같은 시간 특성과 지역적인 특성 및 각 대여소의 중요도 정도를 고려하였다. 대여소의 중요도 정도는 대여량 예측에 중요한 인자로 사용됨을 확인하였다.
In recent years, graph neural networks (GNNs) have been extensively used to analyze graph data across various domains because of their powerful capabilities in learning complex graph-structured data. However, recent research has focused on improving the performance of a single GNN with only two or three layers. This is because stacking layers deeply causes the over-smoothing problem of GNNs, which degrades the performance of GNNs significantly. On the other hand, ensemble methods combine individual weak models to obtain better generalization performance. Among them, gradient boosting is a powerful supervised learning algorithm that adds new weak models in the direction of reducing the errors of the previously created weak models. After repeating this process, gradient boosting combines the weak models to produce a strong model with better performance. Until now, most studies on GNNs have focused on improving the performance of a single GNN. In contrast, improving the performance of GNNs using multiple GNNs has not been studied much yet. In this paper, we propose gradient boosted graph neural networks (GBGNN) that combine multiple shallow GNNs with gradient boosting. We use shallow GNNs as weak models and create new weak models using the proposed gradient boosting-based loss function. Our empirical evaluations on three real-world datasets demonstrate that GBGNN performs much better than a single GNN. Specifically, in our experiments using graph convolutional network (GCN) and graph attention network (GAT) as weak models on the Cora dataset, GBGNN achieves performance improvements of 12.3%p and 6.1%p in node classification accuracy compared to a single GCN and a single GAT, respectively.
Jang, Sungjun;Bae, Han Byeol;Lee, HeanSung;Lee, Sangyoun
한국정보전자통신기술학회논문지
/
제14권4호
/
pp.314-322
/
2021
Skeleton-based action recognition has attracted considerable attention in human action recognition. Recent methods for skeleton-based action recognition employ spatiotemporal graph convolutional networks (GCNs) and have remarkable performance. However, most of them have heavy computational complexity for robust action recognition. To solve this problem, we propose a shuffle graph convolutional network (SGCN) which is a lightweight graph convolutional network using pointwise group convolution rather than pointwise convolution to reduce computational cost. Our SGCN is composed of spatial and temporal GCN. The spatial shuffle GCN contains pointwise group convolution and part shuffle module which enhances local and global information between correlated joints. In addition, the temporal shuffle GCN contains depthwise convolution to maintain a large receptive field. Our model achieves comparable performance with lowest computational cost and exceeds the performance of baseline at 0.3% and 1.2% on NTU RGB+D and NTU RGB+D 120 datasets, respectively.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권11호
/
pp.2903-2923
/
2023
Knowledge recommendation is a type of recommendation system that recommends knowledge content to users in order to satisfy their needs. Although using graph neural networks to extract data features is an effective method for solving the recommendation problem, there is information loss when modeling real-world problems because an edge in a graph structure can only be associated with two nodes. Because one super-edge in the hypergraph structure can be connected with several nodes and the effectiveness of knowledge graph for knowledge expression, a dual-channel hypergraph convolutional neural network model (DCHC) based on hypergraph structure and knowledge graph is proposed. The model divides user data and knowledge data into user subhypergraph and knowledge subhypergraph, respectively, and extracts user data features by dual-channel hypergraph convolution and knowledge data features by combining with knowledge graph technology, and finally generates recommendation results based on the obtained user embedding and knowledge embedding. The performance of DCHC model is higher than the comparative model under AUC and F1 evaluation indicators, comparative experiments with the baseline also demonstrate the validity of DCHC model.
지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
Nuclear Engineering and Technology
/
제54권8호
/
pp.2859-2870
/
2022
Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.
In this paper, production system is implemented with the inferential neural network model using semantic network and directed graph. Production system can be implemented with the transform of knowledge representation in production system into semantic network and of semantic network into directed graph, because directed graphs can be expressed by neural matrices. A concept node should be defined by the state vector to calculated the concepts expressed by matrices. The expressional ability of neunal network depends on how the state vector is defined. In this study, state vector is overlapped and each overlapping part acts as a inheritant of concept.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.