• Title/Summary/Keyword: Graph database

검색결과 188건 처리시간 0.024초

Efficient Query Retrieval from Social Data in Neo4j using LIndex

  • Mathew, Anita Brigit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2211-2232
    • /
    • 2018
  • The unstructured and semi-structured big data in social network poses new challenges in query retrieval. This requirement needs to be met by introducing quality retrieval time measures like indexing. Due to the huge volume of data storage, there originate the need for efficient index algorithms to promote query processing. However, conventional algorithms fail to index the huge amount of frequently obtained information in real time and fall short of providing scalable indexing service. In this paper, a new LIndex algorithm, which is a heuristic on Lucene is built on Neo4jHA architecture that holds the social network Big data. LIndex is a flexible and simplified adaptive indexing scheme that ascendancy decomposed shortest paths around term neighbors as basic indexing unit. This newfangled index proves to be effectual in query space pruning of graph database Neo4j, scalable in index construction and deployment. A graph query is processed and optimized beyond the traditional Lucene in a time-based manner to a more efficient path method in LIndex. This advanced algorithm significantly reduces query fetch without compromising the quality of results in time. The experiments are conducted to confirm the efficiency of the proposed query retrieval in Neo4j graph NoSQL database.

A Study on a Distributed Data Fabric-based Platform in a Multi-Cloud Environment

  • Moon, Seok-Jae;Kang, Seong-Beom;Park, Byung-Joon
    • International Journal of Advanced Culture Technology
    • /
    • 제9권3호
    • /
    • pp.321-326
    • /
    • 2021
  • In a multi-cloud environment, it is necessary to minimize physical movement for efficient interoperability of distributed source data without building a data warehouse or data lake. And there is a need for a data platform that can easily access data anywhere in a multi-cloud environment. In this paper, we propose a new platform based on data fabric centered on a distributed platform suitable for cloud environments that overcomes the limitations of legacy systems. This platform applies the knowledge graph database technique to the physical linkage of source data for interoperability of distributed data. And by integrating all data into one scalable platform in a multi-cloud environment, it uses the holochain technique so that companies can easily access and move data with security and authority guaranteed regardless of where the data is stored. The knowledge graph database mitigates the problem of heterogeneous conflicts of data interoperability in a decentralized environment, and Holochain accelerates the memory and security processing process on traditional blockchains. In this way, data access and sharing of more distributed data interoperability becomes flexible, and metadata matching flexibility is effectively handled.

이종 IoT 데이터 표현을 위한 그래프 모델: 스마트 캠퍼스 관리 사례 연구 (A Graph Model of Heterogeneous IoT Data Representation : A Case Study from Smart Campus Management)

  • 뉘엔반퀴엣;뉘엔휴쥐;뉘엔양쯔엉;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.984-987
    • /
    • 2018
  • In an Internet of Thing (IoT) environment, entities with different attributes and capacities are going to be connected in a highly connected fashion. Specifically, not only the mechanical and electronic devices but also other entities such as people, locations and applications are connected to each other. Understanding and managing these connections play an important role for businesses, which identify opportunities for new IoT services. Traditional approach for storing and querying IoT data is used of a relational database management system (RDMS) such as MySQL or MSSQL. However, using RDMS is not flexible and sufficient for handling heterogeneous IoT data because these data have deeply complex relationships which require nested queries and complex joins on multiple tables. In this paper, we propose a graph model for constructing a graph database of heterogeneous IoT data. Graph databases are purposely-built to store highly connected data with nodes representing entities and edges representing the relationships between these entities. Our model fuses social graph, spatial graph, and things graph, and incorporates the relationships among them. We then present a case study which applies our model for representing data from a Smart Campus using Neo4J platform. Through the results of querying to answer real questions in Smart Campus management, we show the viability of our model.

Edge-Labeled Graph를 적용한 XML 저장 모델 (XML Repository Model based on the Edge-Labeled Graph)

  • 김정희;곽호영
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.993-1001
    • /
    • 2003
  • 본 논문에서는 Edge-Labeled Graph에 기반하여 XML 인스턴스들을 관계형 데이터베이스로 저장하는 모델을 제안하고 구현한다. 저장되는 XML 인스턴스들은 Edge-Labeled Graph에 기반 한 Data Graph로 표현하고 이를 이용하여 데이터 경로, 엘리먼트, 속성, 테이블 인덱스 테이블에 정의한 값들을 추출한 후 Mapper를 이용하여 데이터베이스 스키마를 정의하고 추출된 값들을 저장한다. 그리고, 저장 모델은 질의를 지원하기 위해, XPATH를 따르는 질의 언어로 사용되는 XQL을 SQL로 변환하는 변환기 및 저장된 XML 인스턴스를 복원하는 DBtoXML 처리기를 갖도록 한다. 구현 결과, XML 인스턴스들과 제안된 모델 구조간의 저장 관계가 그래프 기반의 경로를 이용한 표현으로 가능했으며, 동시에, 특정 엘리먼트 또는 속성들의 정보들을 쉽게 검색할 수 있는 가능성을 보였다.

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

의료보건을 위한 의료정보처리에 관한 연구 (A Syudy on the Biomedical Information Processing for Biomedicine and Healthcare)

  • 정현철;박병전;배상현
    • 통합자연과학논문집
    • /
    • 제2권4호
    • /
    • pp.243-251
    • /
    • 2009
  • This paper surveys some researches to accomplish on bioinformatics. These researches wish to propose a database architecture combining a general view of bioinformatics data as a graph of data objects and data relationships, with the efficiency and robustness of data management and query provided by indexing and generic programming techniques. Here, these invert the role of the index, and make it a first-class citizen in the query language. It is possible to do this in a structured way, allowing users to mention indexes explicitly without yielding to a procedural query model, by converting functional relations into explicit functions. In the limit, the database becomes a graph, in which the edges are these indexes. Function composition can be specified either explicitly or implicitly as path queries. The net effect of the inversion is to convert the database into a hyperdatabase: a database of databases, connected by indexes or functions. The inversion approach was motivated by their work in biological databases, for which hyperdatabases are a good model. The need for a good model has slowed progress in bioinformatics.

  • PDF

Rasbian OS에서 STT API를 활용한 형태소 표현에 대한 연구 (Morphology Representation using STT API in Rasbian OS)

  • 박진우;임재순;이성진;문상호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.373-375
    • /
    • 2021
  • 국어의 경우 교착어이기 때문에 영어와 같이 어절 토큰화를 통하여 태깅할 경우 발전 가능성이 영어 보다 낮은 편이다. KoNLPy를 통해 형태소 단위로 분리하여 코퍼스를 토큰화한 형태를 그래프 데이터 베이스로 표현이 되지만 해당 모듈을 그래프 데이터베이스에서 코퍼스로 변환 시 음성파일의 완전 분리 및 실용성에 대한 검증이 필요하다. 본 논문에서는 Raspberry Pi에서 STT API를 활용한 형태소 표현을 나타내고 있다. 코퍼스로 변환된 음성 파일을 KoNLPy로 형태소 분석 후 태깅한다. 분석된 결과는 그래프 데이터베이스로 표현되며 형태소별로 나누어진 토큰으로 구분할 수 있음이 확인되었고, 실용성과 분리 정도를 판단하여 특정 목적성을 지닌 데이터 마이닝 추출이 가능한 것으로 판단된다.

  • PDF

An Information Structure Graph: A Structural Formalization of Information Semantics

  • Lee, Choon-Yeul
    • 정보기술과데이타베이스저널
    • /
    • 제7권1호
    • /
    • pp.55-65
    • /
    • 2000
  • Information semantics is a well-known issue in areas of information systems researches. It describes what data mean, how they are created, where they can be applied to ; thus, it provides indispensable information for management of data. This article proposes to formalize information semantics by the processes that data are created or transformed. A scheme is proposed to describe an information production structure, which is called an information structure graph. An information structure graph is a directed graph, whose leaves are primary input data objects and whose root and internal nodes are output objects. Information semantics is derived from an information structure graph that has data as its root. For this, rules are proposed to manipulate and compare graphs. The structural relationships among information structure graphs are mapped into semantic relationships among data.

  • PDF

Edge-Labeled 그래프 기반의 XML 인스턴스 저장 모델 (A XML Instance Repository Model based on the Edge-Labeled Graph)

  • 김정희;곽호영
    • 인터넷정보학회논문지
    • /
    • 제4권6호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문에서는 Edge-Labeled Graph에 기반하여 XML 인스턴스들을 관계형 데이터베이스내에 저장하는 모델을 제안하고 구현한다. 저장 모델은 저장되는 XMI 인스턴스들을 Edge-Labeled Graph에 기반하여 데이터 그래프로 표현하며, 표현한 데이터 그래프상의 정보를 저장하기 위해 데이터베이스 스키마로 제시된 데이터 경로, 요소, 속성, 테이블 인덱스 테이블의 구조에 따라 정의된 값들을 추출하고 Mapper 모듈을 이용하여 저장하며 질의를 지원하기 위해, XPATH를 따르는 질의 언어인 XQL을 SQL로 변환하는 모듈, 또한 저장된 XML 인스턴스를 복원하는 DBtoXML 모듈을 갖도록 하였다. 구현 결과, XML 인스턴스들과 제안한 저장 모델 구조로의 저장 관계가 그래프 기반의 경로를 이용한 표현으로 가능했으며, 동시에, 특정 요소 또는 속성들의 정보들을 쉽게 검색할 수 있는 가능성을 보였다.

  • PDF

토픽맵과 카산드라를 이용한 그래프 구조와 트랜잭션 동시 처리 기법 (Technique for Concurrent Processing Graph Structure and Transaction Using Topic Maps and Cassandra)

  • 신재현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권3호
    • /
    • pp.159-168
    • /
    • 2012
  • SNS, 클라우드, Web3.0과 같은 새로운 IT환경은 '관계(relation)'가 중요한 요소가 되고 있다. 그리고 이들 관계(relation)는 거래, 즉, 트랜잭션을 발생시킨다. 그러나 우리가 사용하고 있는 관계형 데이터베이스(RDBMS)나 그래프 데이터베이스는 관계(relation)를 나타내는 그래프 구조와 트랜잭션을 동시에 처리하지 못한다. 본 논문은 확장 가능한 복잡 네트워크 시스템에서 활용할 수 있는 그래프 구조와 트랜잭션을 동시에 처리할 수 있는 방법을 제안한다. 제안 기법은 토픽맵의 데이터 모델을 응용하여 그래프 구조와 트랜잭션을 동시에 저장하고 탐색한다. 토픽맵은 시멘틱 웹(Web3.0)을 구현하는 온톨로지 언어 중 하나로써, 정보자원들 사이의 연관 '관계(relation)'를 통해 정보의 네비게이터로써 활용되고 있다. 또한 본 논문에서는 컬럼형 데이터베이스인 카산드라를 이용하여 제안 기법의 아키텍처를 설계, 구현하였다. 이는 분산처리를 이용하여 빅데이터 레벨의 데이터까지 처리할 수 있도록 하기 위함이다. 마지막으로 대표적인 RDBMS인 오라클과 제안 기법을 동일한 데이터 소스, 동일한 질문에 대해 저장 및 질의를 하는 과정을 실험으로 보였다. 이는 조인(join) 없이 관계(relation)를 표현함으로써 RDBMS의 역할까지 충분히 대체 가능함을 보이고자 한다.