Analyzing on-line consumer responses is directly related to the management performance of food companies. Therefore, this study collected and analyzed data from an on-line portal site created by consumers about food companies with issues and examined the relationships between the data and the management performance. Through this process, we identified consumers' awareness of these companies obtained from big data analysis and analyzed the relationship between the results and the sales and stock prices of the companies through a time-series graph and correlation analysis. The results of this study were as follows. First, the result of the text mining analysis suggests that consumers respond more sensitively to negative issues than to positive issues. Second, the emotional analysis showed that companies' ethics issues (Enterprise 3 and 4) have a higher level of emotional continuity than that of food safety issues. It can be interpreted that the problem of ethical management has great influence on consumers' purchasing behavior. Finally, In the case of all negative food issues, the number of word frequency and emotional scores showed opposite trends. As a result of the correlation analysis, there was a correlation between word frequency and stock price in the case of all negative food issues and also between emotional scores and stock price. Recently, studies using big data analytics have been conducted in various fields. Therefore, based on this research, it is expected that studies using big data analytics will be done in the agricultural field.
Objectives : We applied the term weighting method used in the field of data search to quantify relevancy between symptoms and medicinal herbs, and, based on this, we aim to introduce a method of visualizing the characteristics of medicinal herbs. Methods : We proposed HF-IFF, an adaptation of TF-IDF, which is a term weighting measurement method adapted in the field of data search. Using this method, we deduced relevancy between symptoms and medicinal herbs In Cheongkangeuigam that was published in 1984 by organizing the medical theory of Cheongkang, Kim Younghoon, and visualized this as a graph in order to compare the characteristics of medicinal herbs used for different symptoms. Results : HF-IFF is the product of HF and IFF, where HF is the frequency of the relevant medicinal herb for a set of symptoms, and IFF is the inverse of the number of formulations (FF) containing that herb. A total of 251 types of medicinal herb are used in Cheongkangeuigam, and 1538 formulations are classified according to 67 types of symptom. The overall mean for HF-IFF was 0.491, with a maximum of 4.566 and a minimum of 0.013. Conclusions : In spite of several limitations, we were able to use HF-IFF to measure relevancy between symptoms and medicinal herbs, with formulations as an intermediate. We were able to use the quantified results to visually express the characteristics of the herbs used for symptoms by bubble chart and word-cloud from HF-IFF.
KIPS Transactions on Software and Data Engineering
/
v.3
no.5
/
pp.179-186
/
2014
Current networks such as social network, web page link, traffic network are big data which have the large numbers of nodes and edges. Many applications such as social network services and navigation systems use these networks. Since big networks are not fit into the memory, existing in-memory based analysis techniques cannot provide high performance. Frontier-Expansion-Merge (FEM) framework for graph search operations using three corresponding operators in the relational database (RDB) context. FEM exploits an index table that stores pre-computed partial paths for efficient shortest path discovery. However, the index table of FEM has low hit ratio because the indices are determined by distances of indices rather than the possibility of containing a shortest path. In this paper, we propose an method that construct index table using high degree nodes having high hit ratio for efficient shortest path discovery. We experimentally verify that our index technique can support shortest path discovery efficiently in real-world datasets.
Journal of the Korea Society of Computer and Information
/
v.12
no.1
s.45
/
pp.17-24
/
2007
Critical practicality problems are cause to search the presentation and contents according to user request and purpose in previous internet system. Recently, there are a lot of researches about dynamic adaptable ontology based system. We designed ontology based educational system which uses discrete probability and user profile. This system provided advanced usability of contents by ontology and dynamic adaptive model based on discrete probability distribution function and user profile in ontology educational systems. This models represents application domain to weighted direction graph of dynamic adaptive objects and modeling user actions using dynamically approach method structured on discrete probability function. Proposed probability analysis can use that presenting potential attribute to user actions that are tracing search actions of user in ontology structure. This approach methods can allocate dynamically appropriate profiles to user.
An objective expert discrimination scheme is needed for finding researchers who have insight and knowledge about a particular field of research. There are two types of expert discrimination schemes such as a citation graph based method and a formula based method. In this paper, we propose an efficient expert discrimination scheme considering various characteristics that have not been considered in the existing formula based methods. In order to discriminate the expertise of researchers, we present six expertise indices such as quality, productivity, contributiveness, recentness, accuracy, and durability. We also consider the number of social citations to apply the characteristics of academic search sites. Finally, we conduct various experiments to prove the validity and feasibility of the proposed scheme.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.5
/
pp.1-11
/
2022
With the development of deep learning technology, various research and development are underway to estimate preference rankings through learning, and it is used in various fields such as web search, gene classification, recommendation system, and image search. Approximation algorithms are used to estimate deep learning-based preference ranking, which builds more than k comparison sets on all comparison targets to ensure proper accuracy, and how to build comparison sets affects learning. In this paper, we propose a k-disjoint comparison set generation algorithm and a k-chain comparison set generation algorithm, a novel algorithm for generating paired comparison sets for crowd-sourcing-based deep learning affinity measurements. In particular, the experiment confirmed that the k-chaining algorithm, like the conventional circular generation algorithm, also has a random nature that can support stable preference evaluation while ensuring connectivity between data.
The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.2
/
pp.564-582
/
2015
This paper proposes a novel swarm intelligence optimization method which integrates bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear superposition of states in search space probabilistically is used to represent a bacterium, so that the quantum bacteria representation has a better characteristic of population diversity. A quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the bacteria toward better solutions. Several tests are conducted based on benchmark functions including multi-peak function to evaluate optimization performance of the proposed algorithm. Numerical results show that the proposed QBFO has more powerful properties in terms of convergence rate, stability and the ability of searching for the global optimal solution than the original BFO and quantum genetic algorithm. Furthermore, we examine the employment of our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum usage and improves the transmission performance of secondary users, as compared to color sensitive graph coloring algorithm and quantum genetic algorithm.
Journal of the Korean Data and Information Science Society
/
v.22
no.1
/
pp.19-27
/
2011
Recommendation systems are developed to overcome the problems of selection and to promote intention to use. In this study, we propose a recommendation system using adjacency data according to user's behavior over time. For this, the product adjacencies are identified from the adjacency matrix based on graph theory. This research finds that there is a trend in the users' behavior over time though product adjacency fluctuates over time. The system is tested on its usability. The tests show that implementing this recommendation system increases users' intention to purchase and reduces the search time.
This study was carried out to understand the effect of addition of potato search on the frozen dough. The characteristics of frozen dough were measured by the farinogram, the extensogram and the amylogram. The results of these measurements show that the dough added with starch has higher stability than the control. The physical and chemical change of the dough were measured in accordance with the period of the frozen storage. The dough added with starch showed smaller physical and chemical change than control, which means that the starch prevents the frozen dough from the deterioration during the frozen storage. It is supposed from this result that the starch protects the activity of yeast and the structure of gluten matrices from frozen damage. It is understood from this study that addition of potato starch into frozen dough improve the stability of the frozen dough.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.