• Title/Summary/Keyword: Graph Neural Network (GNN)

Search Result 23, Processing Time 0.028 seconds

A Gradient Boosting Method for Graph Neural Networks (그래프 신경망에 대한 그래디언트 부스팅 기법)

  • Jang, Eunjo;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.574-576
    • /
    • 2022
  • 최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.

Comparison of Code Similarity Analysis Performance of funcGNN and Siamese Network (funcGNN과 Siamese Network의 코드 유사성 분석 성능비교)

  • Choi, Dong-Bin;Jo, In-su;Park, Young B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.113-116
    • /
    • 2021
  • As artificial intelligence technologies, including deep learning, develop, these technologies are being introduced to code similarity analysis. In the traditional analysis method of calculating the graph edit distance (GED) after converting the source code into a control flow graph (CFG), there are studies that calculate the GED through a trained graph neural network (GNN) with the converted CFG, Methods for analyzing code similarity through CNN by imaging CFG are also being studied. In this paper, to determine which approach will be effective and efficient in researching code similarity analysis methods using artificial intelligence in the future, code similarity is measured through funcGNN, which measures code similarity using GNN, and Siamese Network, which is an image similarity analysis model. The accuracy was compared and analyzed. As a result of the analysis, the error rate (0.0458) of the Siamese network was bigger than that of the funcGNN (0.0362).

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

A novel method for vehicle load detection in cable-stayed bridge using graph neural network

  • Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.731-744
    • /
    • 2023
  • Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.

Speed Prediction and Analysis of Nearby Road Causality Using Explainable Deep Graph Neural Network (설명 가능 그래프 심층 인공신경망 기반 속도 예측 및 인근 도로 영향력 분석 기법)

  • Kim, Yoo Jin;Yoon, Young
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • AI-based speed prediction studies have been conducted quite actively. However, while the importance of explainable AI is emerging, the study of interpreting and reasoning the AI-based speed predictions has not been carried out much. Therefore, in this paper, 'Explainable Deep Graph Neural Network (GNN)' is devised to analyze the speed prediction and assess the nearby road influence for reasoning the critical contributions to a given road situation. The model's output was explained by comparing the differences in output before and after masking the input values of the GNN model. Using TOPIS traffic speed data, we applied our GNN models for the major congested roads in Seoul. We verified our approach through a traffic flow simulation by adjusting the most influential nearby roads' speed and observing the congestion's relief on the road of interest accordingly. This is meaningful in that our approach can be applied to the transportation network and traffic flow can be improved by controlling specific nearby roads based on the inference results.

Passive sonar signal classification using graph neural network based on image patch (영상 패치 기반 그래프 신경망을 이용한 수동소나 신호분류)

  • Guhn Hyeok Ko;Kibae Lee;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.234-242
    • /
    • 2024
  • We propose a passive sonar signal classification algorithm using Graph Neural Network (GNN). The proposed algorithm segments spectrograms into image patches and represents graphs through connections between adjacent image patches. Subsequently, Graph Convolutional Network (GCN) is trained using the represented graphs to classify signals. In experiments with publicly available underwater acoustic data, the proposed algorithm represents the line frequency features of spectrograms in graph form, achieving an impressive classification accuracy of 92.50 %. This result demonstrates a 8.15 % higher classification accuracy compared to conventional Convolutional Neural Network (CNN).

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

Graph Neural Networks for Korean Dependency Parsing (Graph Neural Networks을 이용한 한국어 의존 구문 분석)

  • Min, Jin-Woo;Hong, Seung-Yean;Lee, Young-Hoon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.537-539
    • /
    • 2019
  • 구문 분석은 문장의 구조를 분석하는 자연어처리 분야로 그래프 기반 방법과 전이 기반 방법으로 나뉘어 연구되어 왔다. 본 논문에서는 그래프 기반 방식에서 높은 성능을 보이고 있는 Deep Biaffine 어텐션 모델에 별도의 High-Order 정보 추출 없이 Graph Neural Network(GNNs)을 이용하여 High-Order 정보를 학습할 수 있도록 확장한 Deep Biaffine 어텐션 GNNs을 적용하여 한국어 세종 구문 분석 셋에서 UAS : 94.44%, LAS : 92.55%의 성능을 달성하였으며 Dual Decomposition을 통해 전이 기반 한국어 구문 분석 모델과 결합하여 추가적인 성능 향상을 보였다.

  • PDF

Object Detection with LiDAR Point Cloud and RGBD Synthesis Using GNN

  • Jung, Tae-Won;Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.192-198
    • /
    • 2020
  • The 3D point cloud is a key technology of object detection for virtual reality and augmented reality. In order to apply various areas of object detection, it is necessary to obtain 3D information and even color information more easily. In general, to generate a 3D point cloud, it is acquired using an expensive scanner device. However, 3D and characteristic information such as RGB and depth can be easily obtained in a mobile device. GNN (Graph Neural Network) can be used for object detection based on these characteristics. In this paper, we have generated RGB and RGBD by detecting basic information and characteristic information from the KITTI dataset, which is often used in 3D point cloud object detection. We have generated RGB-GNN with i-GNN, which is the most widely used LiDAR characteristic information, and color information characteristics that can be obtained from mobile devices. We compared and analyzed object detection accuracy using RGBD-GNN, which characterizes color and depth information.