• Title/Summary/Keyword: Graph Model Structure

Search Result 142, Processing Time 0.032 seconds

Spectral Clustering with Sparse Graph Construction Based on Markov Random Walk

  • Cao, Jiangzhong;Chen, Pei;Ling, Bingo Wing-Kuen;Yang, Zhijing;Dai, Qingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2568-2584
    • /
    • 2015
  • Spectral clustering has become one of the most popular clustering approaches in recent years. Similarity graph constructed on the data is one of the key factors that influence the performance of spectral clustering. However, the similarity graphs constructed by existing methods usually contain some unreliable edges. To construct reliable similarity graph for spectral clustering, an efficient method based on Markov random walk (MRW) is proposed in this paper. In the proposed method, theMRW model is defined on the raw k-NN graph and the neighbors of each sample are determined by the probability of the MRW. Since the high order transition probabilities carry complex relationships among data, the neighbors in the graph determined by our proposed method are more reliable than those of the existing methods. Experiments are performed on the synthetic and real-world datasets for performance evaluation and comparison. The results show that the graph obtained by our proposed method reflects the structure of the data better than those of the state-of-the-art methods and can effectively improve the performance of spectral clustering.

An efficient seismic analysis of regular skeletal structures via graph product rules and canonical forms

  • Kaveh, A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.25-51
    • /
    • 2016
  • In this study, graph product rules are applied to the dynamic analysis of regular skeletal structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures under seismic excitation is derived using graph product rules. This formulation can generally be utilized for efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of matrices containing special patterns for symmetric structures. In this part, the formulations are developed for dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the proposed methods, eigensolution of the problems is achieved with less computational effort due to incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures.

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

An Attack Graph Model for Dynamic Network Environment (동적 네트워크 환경에 적용 가능한 Attack Graph 모델 연구)

  • Moon, Joo Yeon;Kim, Taekyu;Kim, Insung;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • As the size of the system and network environment grows and the network structure and the system configuration change frequently, network administrators have difficulty managing the status manually and identifying real-time changes. In this paper, we suggest a system that scans dynamic network information in real time, scores vulnerability of network devices, generates all potential attack paths, and visualizes them using attack graph. We implemented the proposed algorithm based attack graph; and we demonstrated that it can be applicable in MTD concept based defense system by simulating on dynamic virtual network environment with SDN.

Discovery of Frequent Traversal Patterns from Weighted Traversals and Performance Enhancement by Traversal Split (가중치 순회로부터 빈발 순회패턴의 탐사 및 순회분할을 통한 성능향상)

  • Lee, Seong-Dae;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.940-948
    • /
    • 2007
  • Many real world problems can be modeled as a graph and traversals on the graph. The structure of Web pages can be represented as a graph, for example, and user's navigation paths on the Web pages can be model as a traversal on the graph. It is interesting to discover valuable patterns, such as frequent patterns, from such traversals. In this paper, we propose an algorithm to discover frequent traversal patterns when a directed graph and weighted traversals on the graph are given. Furthermore, we propose a performance enhancement by traversal split and then verify it through experiments.

TeGCN:Transformer-embedded Graph Neural Network for Thin-filer default prediction (TeGCN:씬파일러 신용평가를 위한 트랜스포머 임베딩 기반 그래프 신경망 구조 개발)

  • Seongsu Kim;Junho Bae;Juhyeon Lee;Heejoo Jung;Hee-Woong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.419-437
    • /
    • 2023
  • As the number of thin filers in Korea surpasses 12 million, there is a growing interest in enhancing the accuracy of assessing their credit default risk to generate additional revenue. Specifically, researchers are actively pursuing the development of default prediction models using machine learning and deep learning algorithms, in contrast to traditional statistical default prediction methods, which struggle to capture nonlinearity. Among these efforts, Graph Neural Network (GNN) architecture is noteworthy for predicting default in situations with limited data on thin filers. This is due to their ability to incorporate network information between borrowers alongside conventional credit-related data. However, prior research employing graph neural networks has faced limitations in effectively handling diverse categorical variables present in credit information. In this study, we introduce the Transformer embedded Graph Convolutional Network (TeGCN), which aims to address these limitations and enable effective default prediction for thin filers. TeGCN combines the TabTransformer, capable of extracting contextual information from categorical variables, with the Graph Convolutional Network, which captures network information between borrowers. Our TeGCN model surpasses the baseline model's performance across both the general borrower dataset and the thin filer dataset. Specially, our model performs outstanding results in thin filer default prediction. This study achieves high default prediction accuracy by a model structure tailored to characteristics of credit information containing numerous categorical variables, especially in the context of thin filers with limited data. Our study can contribute to resolving the financial exclusion issues faced by thin filers and facilitate additional revenue within the financial industry.

Multi-site based earthquake event classification using graph convolution networks (그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류)

  • Kim, Gwantae;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.615-621
    • /
    • 2020
  • In this paper, we propose a multi-site based earthquake event classification method using graph convolution networks. In the traditional earthquake event classification methods using deep learning, they used single-site observation to estimate seismic event class. However, to achieve robust and accurate earthquake event classification on the seismic observation network, the method using the information from the multi-site observations is needed, instead of using only single-site data. Firstly, our proposed model employs convolution neural networks to extract informative embedding features from the single-site observation. Secondly, graph convolution networks are used to integrate the features from several stations. To evaluate our model, we explore the model structure and the number of stations for ablation study. Finally, our multi-site based model outperforms up to 10 % accuracy and event recall rate compared to single-site based model.

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

The Establishment of Walking Energy-Weighted Visibility ERAM Model to Analyze the 3D Vertical and Horizontal Network Spaces in a Building (3차원 수직·수평 연결 네트워크 건축 공간분석을 위한 보행에너지 가중 Visibility ERAM 모델 구축)

  • Choi, Sung-Pil;Piao, Gen-Song;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.23-32
    • /
    • 2018
  • The purpose of this study is to establish a walking energy weighted ERAM model that can predict the pedestrian volume by the connection structure of the vertical and horizontal spaces within a three-dimensional building. The process of building a walking-energy weighted ERAM model is as follows. First, the spatial graph was used to reproduce three-dimensional buildings with vertical and horizontal spatial connection structures. Second, the walking energy was measured on the spatial graph. Third, ERAM model was used to apply weights with spatial connection properties in random walking environment, and the walking energy weights were applied to the ERAM model to calculate the walk energy weighted ERAM values and visualize the distribution of pedestrian flow. To verify the validation of the established model, existing and proposed spatial analysis models were compared to real space. The results of this study are as follows : The model proposed in this study showed as much elaborated estimation of pedestrian traffic flow in real space as in traditional spatial analysis models, and also it showed much higher level of forecasting pedestrian traffic flow in real space than existing models.