• 제목/요약/키워드: Granule release

검색결과 73건 처리시간 0.021초

Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation

  • Jeong, Dahye;Irfan, Muhammad;Kim, Sung-Dae;Kim, Suk;Oh, Jun-Hwan;Park, Chae-Kyu;Kim, Hyun-Kyoung;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.548-555
    • /
    • 2017
  • Background: Korean Red Ginseng has been used for several decades to treat many diseases, enhancing both immunity and physical strength. Previous studies have documented the therapeutic effects of ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are mediated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury; however, they also play a crucial role in the development of acute coronary diseases. We prepared ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology. Methods: To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule secretion, intracellular calcium ($[Ca^{2+}]_i$) mobilization, flow cytometry, and immunoblot analysis were carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen plus epinephrine-induced acute pulmonary thromboembolism mouse model was used. Results: We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and $[Ca^{2+}]_i$ mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-RGE effectively reduced collagen plus epinephrine-induced mortality in mice. Conclusion: These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet therapeutic agent against platelet-mediated cardiovascular disorders.

Antiplatelet Activity of [5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl]guanidine (KR-32570), a Novel Sodium/hydrogen Exchanger-1 and Its Mechanism of Action

  • Lee Kyung-Sup;Park Jung-Woo;Jin Yong-Ri;Jung In-Sang;Cho Mi-Ra;Yi Kyu-Yang;Yoo Sung-Eun;Chung Hun-Jong;Yun Yeo-Pyo;Park Tae-Kyu;Shin Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • 제29권5호
    • /
    • pp.375-383
    • /
    • 2006
  • The anti platelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen $(10{\mu}g/mL)$, thrombin (0.05 U/mL), arachidonic acid $(100{\mu}M)$, a thromboxane (TX) $A_2$ mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin $F_2,\;1{\mu}M$) and a $Ca^{2+}$ ATPase inhibitor thapsigargin $(0.5{\mu}M)$ ($IC_{50}$ values: $13.8{\pm}1.8,\;26.3{\pm}1.2,\;8.5{\pm}0.9,\;4.3{\pm}1.7\;and\;49.8{\pm}1.4{\mu}M$, respectively). KR-32570 inhibited the collagen-induced liberation of $[^3H]$arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at $50{\mu}M$. The $TXA_2$ synthase assay showed that KR-32570 also inhibited the conversion of the substrate $PGH_2$ to $TXB_2$ at all concentrations. Furthermore, KR-32570 significantly inhibited the $[Ca^{2+}]_i$ mobilization induced by collagen at $50{\mu}M$, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen $(10{\mu}g/mL)$induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, $TXA_2$ synthase, the mobilization of cytosolic $Ca^{2+}$ and NHE-1.

콜라겐으로 유도한 사람 혈소판 응집에 미치는 Scopoletin의 억제 효과 (Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation)

  • 권혁우;신정해;박창은;이동하
    • 대한임상검사과학회지
    • /
    • 제51권1호
    • /
    • pp.34-41
    • /
    • 2019
  • 혈소판 응집은 혈관 손상의 경우 지혈 플러그 형성에 필수적이다. 그러나, 과도한 혈소판 응집은 혈전증, 죽상 동맥 경화증 및 심근 경색과 같은 순환기 장애를 일으킬 수도 있다. Scopoletin은 Scopolia 또는 Artemisia 속 식물의 뿌리에서 발견되는 성분으로, 항응고 및 항말라리아 작용을 가지는 것으로 알려져 있다. 본 연구는 collagen에 의해 유발된 혈소판 응집에 scopoletin이 미치는 영향을 조사하였다. Scopoletin은 활성화된 혈소판에서 생성되는 응집 유도 분자인 thromboxane $A_2$ ($TXA_2$) 및 세포 내 $Ca^{2+}$ 동원 ($[Ca^{2+}]_i$)의 하향 조절을 통해 항 혈소판 효과를 나타내었다. 한편, scopoletin은 세포 내 $Ca^{2+}$-길항제인 것으로 알려져 있는 cyclic adenosine monophosphate(cAMP)와 cyclic guanosine monophosphate (cGMP) 수치를 증가시켰다. 특히, scopoletin은 cGMP보다 cAMP 수준을 강력하게 증가함으로써 콜라겐에 의해 유발된 사람 혈소판 응집에서의 ${\alpha}IIb/{\beta}_3$에 대한 피브리노겐 결합을 억제하였다. 또한, scopoletin은 용량 의존적으로 collagen에 의해 증가된 adenosine trisphosphate (ATP)의 방출을 억제하였다. 이 결과는 혈소판 내 과립 분비를 통한 응집 증폭작용이 scopoletin에 의해 억제되었음을 의미한다. 따라서, 본 연구는 scopoletin이 강력한 항혈소판 효과를 가지며 혈소판-유래의 혈관 질환을 예방할 가능성이 크다는 것을 입증하였다.