• Title/Summary/Keyword: Granular material

Search Result 216, Processing Time 0.024 seconds

Effect of Medium Composition Including Chestnut Woodchips and Granular Rockwool on Growth of Plug Seedlings (밤나무 목재입자와 입상 암면의 배지내 혼합 비율이 플러그묘의 생육에 미치는 영향)

  • Lim, Mi Young;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.508-512
    • /
    • 2000
  • Growth of red pepper (Capsicum annuum) 'Kumtap', tomato (Lycoperisocon esculentum) 'Seokwang', petunia (Petunia hybrida) 'Madness Rose', and pansy (Viola tricolor) 'Magestic Giant' in mixtures of chestnut woodchips and granular rockwool at 25:75, 50:50, or 75:25 (v/v) was examined. Chestnut woodchips were soaked in water for 48 hours or aged in open field for 6 months in order to remove substances impeding plant growth. A commercial plug medium was used as the control. All treatments showed in a similar result in red pepper, petunia, and pansy. Plant height, fresh weight, dry weight, and chlorophyll content in media containing chestnut woodchips, especially in higher proportions, were poorer as compared to those in the control. On the contrary, height, fresh weight, and dry weight of tomato seedlings in media containing woodchips were significantly higher than those in the control. For petunia, pansy, and red pepper, six month ageing in open field of woodchips was more favorable for growth than 48 hour water soaking. Emergance of petunia seed was inferior, especially when woodchip content was higher, to the other crops with a resultant growth suppression. From the results, chestnut woodchips proved to be a practical material as a medium component only in tomato plants.

  • PDF

Applicability of Particle Crushing Model by Using PFC (PFC를 이용한 입자 파쇄 모델의 적용성 연구)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • Granular soils having a large particle size have been used as a filling material in the construction of foundation, harbor, dam, and so on. Consequently, the shear behavior of this granular soil plays a key role in respect of stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause a disturbance of ground characteristics and consequently induce issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM (Discrete Element Method)-based software program PFC2D (Particle Flow Code). By dividing soil particle bonding model into crushing model and noncrushing model, total four particle bonding models were simulated and their results were compared. Noncrushing model included one ball model and clump model, and crushing model included cluster model and Lobo-crushing model. The combinations of soil particle followed the research results of Lobo-Guerrero and Vallejo (2005) which were composed of eight circles. The results showed that the friction angle was in order of clump model > cluster model > one ball model. The particle bonding model compared to one ball model and noncrushing model compared to crushing model showed higher shear strength. It was also concluded that the model suggested by Lobo-Guerrero and Vallejo (2005) is not appropriate to simulate the soil particle crushing.

  • PDF

Deterioration Assessment and Consolidation Effect of Ethylsilicate Consolidants for Samneunggyeseongakyukjonbul(Rock-carved Yukjonbul Buddha in Samneung Valley) in Namsan, Gyeongju (경주 남산 삼릉계곡 선각육존불의 훼손도 평가와 표면 강화처리제 적용 효과)

  • Kim, Jae Hwan;Lee, Myeong Seong;Lee, Jae Man;Jo, Seung Nam;Kim, Jiyoung;Lee, Chan Hee
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.405-413
    • /
    • 2012
  • This study demonstrates the consolidation effect of ethylsilicate consolidants considering material characteristics and weathering degree of Samneunggyeseongakyukjonbul(rock-carved Yukjonbul Buddha in Samneung Valley) in Namsan, Gyeongju. The buddha statue is composed of alkali feldspar granite and contains numerous sets of joint with exfoliation and granular disintegration, therefore the statue is necessary to be treated for surface strength. The laboratory and in-situ tests of consolidation effect showed more increase of ultrasonic velocity that KSE 300, a relatively highly concentrated consolidant, performed more increase of ultrasonic velocity and decrease of porosity than others after treatments in weathered granite. And the consolidated rock with OH 100 was more resistant to salt weathering. For the buddha statues, KSE 300 is more applicable to enhance surface strength because it showed higher consolidation effect for long term than OH 100 and the statues has not been weathered by salts.

Material Characteristics and Ultrasonic Velocity Diagnosis of the Five-storied Stone Pagoda in Tamni-ri, Uiseong (의성 탑리리 오층석탑의 재질특성과 초음파 물성진단)

  • Lee, Myeong Seong;Lee, Jae Man;Kim, Jae Hwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.70-85
    • /
    • 2012
  • Uiseong Tamni-ri Five-storied Stone Pagoda is composed of andesitic tuff and partially combined with tuff breccia and fine-grained granite. The andesitic tuff is identical to basement rock of Geumseongsan Mountain based on lithological, mineralogical and geochemical characteristics. The pagoda has suffered physical weathering such as crack and scaling, discoloration and biological colonization with complex reaction. Expecially, dark gray and brown discoloration appeared whole over the surface of the pagoda, and three to five-layered exfoliation and granular disintegration dominantly occurred in the fourth and fifth roof stones. It is assuming that the stone elements of the pagoda are evaluated as third to forth grades (average third grade) of weathering compared to fresh rock in Geumseongsan Mountain. The physical strength of the stone elements shows low values in the south and west sides of the pagoda that corresponds high weathering degree of the west side due to exfoliation, crack and granular disintegration. It is necessary to investigate the pagoda for precise deterioration assessment, monitoring and conservation treatment.

Engineering Research on the Burial Ground Materials of the Buried Cultural Assets in Andong (안동지역 매장문화재 중 매장지반재료의 공학적 특성)

  • Park, Hyeong-Dong;Hwang, Ji-Ho;Kim, Sung-Soo
    • Journal of Conservation Science
    • /
    • v.8 no.1 s.11
    • /
    • pp.51-57
    • /
    • 1999
  • Although the mummies of Lee, Myeong-Jung and his wife whose family name is Moon, were buried in similar sites in 1560's, the degree of decay of the dead bodies and antiquities between two people were quite different. This study was focused on the cause of those differences in the view of engineering concept. Granular soil around the study site shows good drainage and such characteristic could be a factor of excellent conservation of dead body. From the physical characteristics of the material containing lime that is considered to be a barrier from water and air, it was observed that the material around dead body of the wife was more compact and denser than that of the husband. This may suggest that the former is better than the latter in keeping away from the water and air. To understand those differences of physical characteristics between two materials containing lime, minerals had to be identified from the two materials. It was revealed that material containing lime around dead body of the wife contains gypsum and more calcite, which could be the reason for better barrier Preventing from water and air than that around the husband.

  • PDF

A Study on the Pile Behaviour Adjacent to Tunnel Using Photo Imaging Process and Numerical Analysis (Photo Imaging Process 기법 및 수치해석을 이용한 터널주변 파일기초거동에 대한 연구)

  • Lee Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.87-102
    • /
    • 2005
  • In the congested urban areas, tunnelling close to existing structures or services often occurs due to the lack of surface space so that tunnelling-induced ground movements may cause a serious damage to the adjacent structures. This study focused on the two dimensional laboratory model pile-soil-tunnelling interaction tests using a close range photogrammetric technique. Testing equipments and procedures were Introduced, particularly features of aluminium rods regarded as the frictional granular material. The experimental result showed that the photo imaging process by the VMS and EngVis programs proved to be a useful tool in measuring the pile tip movements during the tunnelling. Consequently, the normalised pile tip movement data for the influence zones can be generated by the laboratory model tests using the Photogrammetric technique. This study presents influence zones associated with the normalized pile tip settlements due to tunnelling in the cohesionless material. The influence zones were Identified by both a laboratory model test and a numerical analysis. The normalized pile tip movements from the model test were in good agreement with the numerical analysis result. The influence zones proposed in this study could be used to decide the reasonable location of tunnel construction in the planning stage. However, the scale of model pile and model tunnel sizes must be carefully adjusted as real ones for practical application considering the ground conditions at a given site.

Mechanism on Bulb Formation of Compaction Pile Depending on Materials (재료에 따른 다짐말뚝 구근 형성 메커니즘)

  • Choi, Jeong Ho;Lee, Min Jy;Falcon, Sen Sven;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.25-37
    • /
    • 2022
  • In this paper, a small-scale model testing system was developed using a series of small-scale model tests to analyze the mechanism of compaction pile formation and evaluate the quality of controlled grading aggregates proposed as an alternative material to the sand compaction pile (SCP) method and granular compaction pile (GCP). These are the most typical ground improvement methods in field practice, particularly for soft grounds. However, the SCP has faced difficulties due to the supply shortage of natural sand and the corresponding price surge of sand. The GCP is limited in marine soft grounds because of the failure occurring at the pile tip caused by excessive expansion of the deeper bulbs, leading to uneven bulb formation. The uniformity of compacted pile bulbs is critical to ensuring the bearing capacity and quality of the compaction pile. This study aims to evaluate the performance of the new material and controlled grading aggregates using small-scale model tests simulating field compaction process to investigate its potential application in comparison with SCP. The compaction piles are examined in four cases according to different materials used for compaction pile and clay strength. The compaction pile materials, which are made of sand and controlled grading aggregates, used in this study were compared to reveal the mechanism of the bulb creation. The experimental data confirm that the bulb formation quality of the traditional sand and the new material, controlled grading aggregates are comparable. The compaction pile made of controlled grading aggregates presents higher bearing capacity than that of marine sand.

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Highly filled AIN/epoxy composites for microelectronic encapsulation (반도체 봉지용 고충진 AIN/Epoxy 복합재료)

  • 배종우;김원호;황영훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.131-134
    • /
    • 2000
  • Increased temperature adversely affects the reliability of a device. So, package material should have high thermal diffusion, i.e., high thermal conductivity. And, there are several other physical properties of polymeric materials that are important to microelectronics packaging, some of which are a low dielectric constant, a low coefficient of thermal expansion (CTE), and a high flexural strength. In this study, to get practical maximum packing fraction of AIN (granular type) filled EMC, the properties such as the spiral flow, thermal conductivity, CTE, and water resistance of AIN-filled EMC (65-vol%) were evaluated according to the size of AIN and the filler-size distribution. Also, physical properties of AIN filled EMC above 65-vol% were evaluated according to increasing AIN content at the point of maximum packing fraction (highly loading condition). The high loading conditions of EMC were set $D_L/D_S$=12 and $X_S$=0.25 like as filler of sphere shape and the AIN filled EMC in this conditions can be obtained satisfactory fluidity up to 70-vol%. As a result, the AIN filled EMC (70-vol%) at high loading condition showed improved thermal conductivity (about 6 W/m-K), dielectric constant (2.0~3.0), CTE(less than 14 ppm/$^{\circ}C$) and water resistance. So, the AIN filled EMC (70-vol%) at high loading condition meets the requirement fur advanced microelectronic packaging materials.

  • PDF

STUDIES ON THE TOXICITY AND BIODEGRADATION OF MINOCLINE STRIP IMPLANTED IN GINGIVA (미노클린 첨부제의 구강점막 독성 및 치은조직내에서의 생분해에 관한 연구)

  • Rim, Byung-Moo;Kim, Hyung-Seop;Han, Sang-Sup;Lee, Ho-Il;Chae, Hyun-Sok
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.397-405
    • /
    • 1994
  • Minocline Strip(MS), a local drug delivery developed as a controlling means for microoragnisms in gingival wound and periodontitis, was implanted in the gingiva of experimental animals. The toxic effects and biodegradation of MS were studied in respect to pathological changes induced in gingival tissue. The experimental animals treated with MS had not showed significant difference in symptom, body weights, feed and water intake, and blood analysis throughout 150 days of experimental period, but revealed significantly increased values of total WBC counts and AST (SGOT) on the 7th day, compared with controls. The treated animals revealed petechial hemorrhage and severe edema accompanying degeneration and necrosis of damaged muscle fibers around the surgical wound, but no local inflammatory reaction and concerned lesions were found. The implanted MS became encapsulated by thin connective tissue, and its size and color diminished gradually according to the experimental term. The MS-like material appeared in the nearby lymphatics on the 110th day. The implated MS remained as fine granular particles or disappeared on the 130th day, and the decrease of its volume and density were variable depending on each individual. These results indicate that long-term implantation of MS may not produce inflammation or toxic effects, and eventually lead to complete biodegradation.

  • PDF