• Title/Summary/Keyword: Granular

Search Result 1,724, Processing Time 0.03 seconds

A Study on the Optimization of Active Material and Preparation of Granular Adsorbent of Metal Oxide-based Adsorbent for Adsorption of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착을 위한 금속산화물 기반 흡착제의 활성물질 최적화 및 입상형 흡착제 제조에 대한 연구)

  • Choi, Sung Yeol;Han, Dong Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.460-465
    • /
    • 2019
  • In this study, the optimization of active materials and the preparation of particulate adsorbents for the application of metal oxide-based adsorbents for the treatment of $H_2S$, an air pollutant and odorant, occurred in various industrial facilities were investigated. The adsorbents were prepared by using $TiO_2$, which has a high physicochemical stability and relatively high specific surface area among metal oxides and also by different kinds and contents of active materials. The correlation between the physicochemical property and adsorption performance of the adsorbents confirmed that the adsorbent containing KI, which is a typical alkali metal among the active metals, showed the highest adsorption performance. The relationship between the contents and the adsorption performance was non-proportional, but a volcano plot. From XRD, SEM and BET analyses, it was confirmed that the active material was exposed to the surface above a certain amount and also the adsorption performance was the best when the specific surface area and pore volume were $40{\sim}100m^2/g$ and $0.1{\sim}0.3cm^3/g$, respectively. For practical application, the adsorbent was granulated or coated on a ceramic support. It was also confirmed that the adsorbent showed high adsorption performance when the adsorbent was coated on the ceramic rather than that of the granulated support.

Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes (단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출)

  • Lim, Hyun-Man;Jang, Yeo-Ju;Jung, Jin-Hong;Yoon, Young-Han;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.

Analyzing Characteristic of Deterioration Status for Stone Properties in the Tae-Jo Geonwolleung of the Royal Tombs of the Joseon Dynasty (조선왕릉 태조 건원릉 내 석물의 훼손 특성 분석)

  • Lee, Mi Hye;Lee, Myeong Seong;Chun, Yu Gun;Lee, Tae Jong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.62-73
    • /
    • 2015
  • The Tae-Jo Geonwolleung is the tomb of the first king Tae-Jo of the Joseon Dynasty in the complex of the Royal Tombs of the Joseon Dynasty which is listed in World Heritage, and it contains various types of stone properties. The material of the stone properties consist of a single type of medium-grained biotite granite, however, each properties have different intensity and types in deterioration phenomena according to their locations and purposes. The major deterioration types of the stones are analyzed as physical decomposition and biodeterioration. The exfoliation, breaking-out and granular decomposition are widespread types of the deterioration throughout the entire burial mound stone properties and surrounding stone properties. On the other hands, the colonization of mosses and plants, and contamination by foreign materials are found more frequent in the burial mound stone properties as these stones are in contact with the soil of the tomb mound and moisture in the soil helped biodeterioration. It is suggested that anti-biology treatment and physical reinforcement are applied to the deteriorated stones to prevent further damage on the stone components of the tomb.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Physicochemical and pasting properties of rice starches from soft rice varieties developed by endosperm mutation breeding (배유 돌연변이처리로 개발된 연질미 전분의 이화학적 특성)

  • Kim, Jae Suk;No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.109-113
    • /
    • 2019
  • The soft rice varieties, Hangaru and Singil, were developed via mutation breeding using N-methyl-N-nitrosourea treatment to obtain dry-milled rice flours. The physicochemical, morphological, and pasting properties of these starches were compared with those of Seolgaeng and Chuchung starches. Singil starch was found to exhibit the highest amylose content and initial pasting temperature, whereas Hangaru starch exhibited the highest water binding capacity and swelling power. Hangaru starch's granule size at $d_{50}$ was the largest among the four different starch types. Some Seolgaeng, Hangaru, and Singil granules were observed to have a round-faced polygon shape. Furthermore, the crystallinity of all four starch types was type A. The peak, trough, and final viscosities of the soft rice starches were also lower than those of normal starches. Notably, Hangaru starch showed the highest breakdown viscosity, but the lowest total setback viscosity among the four starches. From these results, the starch characteristics of the soft rice flours were discovered to be different based on the rice variety.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

A Case of Cytomegalovirus Retinitis during Maintenance Chemotherapy for Acute Leukemia

  • Ahn, Bin;Song, Seungha;Han, Mi Seon;Oh, Baek Lok;Choi, Jae Hong;Choi, Eun Hwa
    • Pediatric Infection and Vaccine
    • /
    • v.27 no.3
    • /
    • pp.198-204
    • /
    • 2020
  • Cytomegalovirus (CMV) disease is rare in children who receive anticancer chemotherapy and have no history of stem cell transplantation (SCT). We report a case of CMV retinitis that developed during maintenance chemotherapy for acute leukemia. A 7-year-old boy developed decreased visual acuity and persistent pancytopenia during maintenance chemotherapy. Laboratory investigations initially showed significant CMV antigenemia (51 positive cells/200,000 leukocytes); however, antiviral therapy was not deemed necessary in this patient who had no history of SCT. CMV antigenemia worsened to 170 positive cells/200,000 leukocytes over 3 weeks. Ophthalmological examination revealed multiple bilateral retinal infiltrates and granular lesions. He was diagnosed with CMV retinitis and was treated with a 4-week course of intravenous ganciclovir and intravitreal injection of ganciclovir 6 times, followed by a 1-month course of orally administered valganciclovir. A CMV antigenemia assay showed negative results, and follow-up fundoscopy revealed lesser retinal infiltration after the sixth intravitreal ganciclovir injection. Future studies should focus on the development of standardized screening methods and preemptive therapeutic strategies for CMV disease in high-risk children.

An Comparative Study on the Method of Determining Allowable Horizontal Bearing Capacity of Piles (말뚝의 허용횡방향지지력 결정법의 비교연구)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.267-274
    • /
    • 2021
  • Among several methods for determining the allowable lateral resistances of piles, the subgrade reaction method and ultimate lateral resistance method are generally used. To determine the effects of the soil conditions, pile head restraint conditions, and pile lengths on determining the allowable lateral resistances of piles, computations of the allowable lateral resistances of piles using the two methods were executed, and the computation results were compared. For piles in soft cohesive soil, the pile design is governed by the allowable lateral resistance of a pile from subgrade soil reaction method regardless of the pile head restraints conditions and pile lengths. The allowable lateral resistance of a pile from the ultimate lateral resistance governs the design as the undrained shear strength increases. Except for the case of a short pile, which is installed in loose granular soil, the allowable lateral resistance of a pile from ultimate lateral resistance governs the design of laterally loaded piles. According to this study, computation of the ultimate lateral resistance of a pile is needed, even though some opinions suggest that the design of a laterally loaded pile is satisfied only by the subgrade reaction method. The pile width barely influences the coefficient of horizontal subgrade reaction. Realistically, the effect of the pile width can be disregarded in the condition of common pile widths of 20~90cm.