• Title/Summary/Keyword: Granitic gneiss

Search Result 128, Processing Time 0.032 seconds

Geochemistry and Metamorphism of the Gneisses in Gwangyang-Hadong Area (광양-하동지역에 분포하는 편마암류의 지구화학 및 변성작용)

  • Park, Bae-Young;Suh, Gu-Won
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.221-245
    • /
    • 2008
  • The precambrian granitic gneiss and porphyroblastic gneiss are widely distributed in the Gwangyang-Hadong area of Korea. This study focuses on the geochemical properties and metamorphic P-T conditions of these gneisses. These gneisses are plotted according to granodiorite domain on an IUGS silica-alkali diagram. Geochemical properties of major elements suggest that these rocks are of the sub-alkalic rock series, and were farmed from S-type magmas which were generated in a syn-collision tectonic environment. The amounts of trace elements (Zn, Sc, Sr, V, etc.) decreased as $SiO_2$ concentrations increased. Almandine and spessartine mol%'s and XFe are higher in garnet rims, while pyrope mol%'s are higher in the garnet cores. This seems to be the result of garnet growth and retrogressive metamorphism. Metamorphic zones are divided into sillimanite-cordierite, sillimanite, garnet, and biotite zones. Metamorphic P-T conditions estimated from the gneisses indicate high temperature and low to medium pressure metamorphism (689-757$^{\circ}C$, 5.0-5.6 kbar), followed by medium temperature, low pressure retrorade metamorphism (579-628$^{\circ}C$, 3.1-4.5 kbar), and overprinted retrogade metamorphism (502-558$^{\circ}C$, 1.6-2.3 kbar).

개별요소법을 이용한 핵석층의 물성 산정 : 화강암질 편마암 지역에 분포하는 핵석층의 예

  • Yu, Seung-Hak;Park, Yeong-Do;Kim, Gi-Seok;Park, Hyeon-Ik;Seo, Yeong-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.130-139
    • /
    • 2007
  • We have carried out numerical compression experiments to estimate the mechanical properties (Mohr-Coulomb and elastic) of corestone-bearing saprolites in Beolgyo area. The studied saprolite, consisting of mechanically much stronger corestone and weaker matrix, is a weathering product of the Precambrian granitic gneiss in the Youngnam massif. Since the saprolite consists of larger corestones with diameter up to 2m, it is impossible to directly measure the mechanical properties by physical experiments. We have measured the mechanical properties of corestone and matrix from naturally occurring saprolite and have used them as a reference for our numerical model. Then, we mixed each material and carried out biaxial compression tests while varying the volume percentage of corestones from 0 to 57%. We found that both cohesion and internal friction angle increase with the volume percentage of corestones while elastic modulus remains constant. We found the results from numerical experiments are in contradiction to what is known from physical experiments using artificial saprolites. This may be due to a possibility that the sharp and discrete nature of interface between corestone and matrix in physical experiments differs from the gradual interfacial nature in numerical modelling and natural saprolites.

  • PDF

국립공원 월악산 지역의 지형관광자원에 대한 연구

  • 김종은
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.13 no.2
    • /
    • pp.207-221
    • /
    • 2002
  • Wolaksan is a national park which has beautiful scenery with exposed rocks. The mountain is 1097 meters high and has 3 tops which are Jungang(the center), Arae(the lower part), Jjokduri. The highest point of the vertical cliff is 150m from the earth and the total circumferences of three tops is about 4km. These tops are easy to break by grains because they are from sedimentary rocks. Wolaksan is a bad mountain because the area is a Mosikjuk rocky area. However, the area around Wolaksan is thicky wooded and has many achievements and it makes good scenery. From top to southeastern, there are vertical cliff, The tops are originally from one but these are divided by partial weathering corrosion. The slide of path to Wolaksan is about 70。. The lower part of the mountain from Shinroksa to top has a gentle slope but there are a steep slope from the middle. Especially, the area has many rocks. The rocks of Wolaksan are almost granitic-gneiss or metamorphic rocks so it often fall down. Because of these fallen rocks, its valleys have great landscapes. The size of rock is less than 60cm. The landscapes of valleys such as Songgye, Dukju, Yonghwa are the main natural tourism resources.

  • PDF

A Study on the Reduction Effect of Vibration of NPS Blasting Method on Andesite, Granite and Granitic Gneiss (안산암, 화강암, 화강편마암에서의 NPS 발파법의 진동감쇠효과에 관한 연구)

  • 심동수;강대우
    • Explosives and Blasting
    • /
    • v.22 no.2
    • /
    • pp.13-20
    • /
    • 2004
  • 도심지 굴착과 같은 환경적 제약과 사회적 문제가 존재하는 현장에 대하여. 암반제거작업에 있어서 가장 경제적이고 효율적인 발파공법을 적용하기 위해서, 본 연구는 기존의 발파방진기술인 Line Drilling과 Presplitting의 상점을 살리면서, 단점을 보안한 새로운 발파방진 기술인 NPS(New Presplitting)발파법의 효과에 대하여 연구하였다. NPS 발파법의 분석은 안산암과 화강암, 화강편마암의 3종류의 암반을 대상으로 NPS 발파법의 열수를 1열, 2열, 3열, 4열을 적용하여 발파로 인한 진동을 NPS 발파법의 적용전과 후의 발파진동값을 기준으로 NPS 발파법의 전, 후 진동감쇠 효과를 비교하고, 동일 조건을 가정한 경제성을 살펴보았다. 그 결과 NPS 발파법의 3가지 암석에 대한 현장적용 결과 암종에 따른 NPS 발파공법의 진동감쇠효과의 변화보다, NPS 발파법의 적용 pattern에 대한 진동감쇠효과의 변화가 크게 나타났으며 NPS 발파공열이 2열일 때 감쇠범위는 40%∼80%로 가장 효율적으로 나타났으며 3열과 4열의 경우에도 진동감쇠효과는 있으나 그 효율이 크게 향상되지 않을 뿐 아니라 2열에 비하여 경제적으로 불리함을 알 수 있었다. 또한 NPS 발파법은 보안물과의 거리가 가까울수록 더 경제성이 큰 것으로 분석되었다.

Chemical and TEM Studies of Chklorites in the Talc Deposites of the Chungnam Area, Korea (우리나라 충남지역 활석광상에서 산출되는 녹니석의 화학적 및 투과전자현미경 연구)

  • Geon-Young Kim;Soo Jin Kim
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.53-64
    • /
    • 2000
  • Chlorite from the talc deposits in the Chungnam area, Korea, has been studied using electron microprobe analysis and high resolution transmission electron microscopy (HRTEM), Talc orea are hydrothermal alteration products of serpentinite which was originated from ultramafic rocks. Chlorite occurs in close association with talc ores of with the black alteration zone between talc ore bodies and granitic gneiss. It is the most abundant impurity mineral of talc ores. Chlorite in association with talc is characterized by very high but narrow variation in Mg/(Mg+Fe) ratios (0.784~0.951), significant octahedral substitution (-0.200~0.692), wide variation in Al contents (1.085~3.160 / 14 oxygens), and high Cr and Ni contents. It was formed under a very limited but high Mg/(Mg+Fe) condition in close connection with serpentinite. Chlorite in the black alteration zone is characterized by a high Fe content, wide variation in Mg/(Mg+Fe) ratios (0.378~0.852), narrow octahedral substitution (-0.035~0.525), high narrow Al contents (1.468~2.959), and low Cr and Ni contents. It was formed under a low Mg/(Mg+Fe) and relatively Al-rich condition in close connection with county rocks. Two different chemical modes for chlorite suggest two different origins for two different chlorites. Although most of chlorites show typical 14-$\AA$ lattice fringe images under HRTEM, some chlorites show fringe images of 21-$\AA$ (14$\AA$+7$\AA$) spacings within (001) lattice-fringe images of chlorite (14$\AA$). But brown chlorite from the black zone has high Ti and K contents suggesting that mica was the precursor of brown chlorite. Such possibility is also supported by the fact that lattice-fringe images of brown chlorite show 14-$\AA$ chlorite layers in which 10-$\AA$ mica single layer or packets are interlayered. Partial terminations from 3 mica layers to 2 chlorite layers are often observed. It, therefore, is suggested that the chlorite associated with talc ores is a hydrothermal alteration products of serpentinite, whereas the chlorites in the black alteration zone is a hydrothermal alteration product of granitic gnesis under a partial influence of serpentinite.

  • PDF

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Phase equilibria between coexisting minerals in the talc ores and process of talc formation in the Daeheung Talc Deposits, Korea (대흥활석광상에 있어서 공존하는 광물의 상평형과 활석화 과정)

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.156-170
    • /
    • 1994
  • The talc ore deposits can be divided into chloritic and dolomitic ores according to mineral assemblages. The former is mainly composed of chlorite and talc accompanied with dolomite, muscovite and opaque mineral, and the latter of dolomite and talc with serpentine, calcite and magnesite in places. Talc was originated from chlorite and serpentine. Carbonate minerals were formed either directly from the introduced hydrothermal solution or secondarily as a by-product of steatitization of chlorite and serpentine. The process of talc formation may be governed by the chemical composition of the host rocks and the amount and/or chemical composition of the hydrothermal solution which may be different in places. However, the representative reactions producing talc from chlorite and serpentine are as follows : (1) chlorite+$Mg^{++}+Si^{4+}+H_2O$=talc, (2) chlorite+$Mg^{++}+Si^{4+}+Ca^{++}+CO_2+O_2+H_2O$=talc+ dolomite+ magnesite, and (3) serpentine +$Mg^{++}+Fe^{++}+Si^{4+}+Ca^{++}+CO_2+H_2O$=talc+dolomite. The reactions indicate that the carbonate minerals can be formed when the hydrothermal solution have high $fO_2$ and $fCO_2$. The steatitization might be proceeded by the hydrothermally metasomatic reaction between chlorite schist or chlorite gneiss intercalated in the granitic gneiss and hydrothermal solution accompanied to the wet granitization.

  • PDF

Petrology of Charnockite in Sancheong Area (산청지역에 분포하는 챠노카이트의 암석학적 연구)

  • Lee, Sang-Won;Ock, Soo-Seck;Lee, Young-Taek
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.

Petrological, Geochemical and Geochronological Studies of Precambrian Basement in Northeast Asia Region: 2. Zircon Ages of Some Metamorphic Rocks from Gyeonggi Massif (동북아시아지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구연대학적 연구: 2. 경기육괴 일부 변성암의 저어콘 연대)

  • ;;Cao Lin;Jin Wei;Zhang Xingzhou
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • U-Pb age determination was performed on the zircon fractions separated from the metamorphic rocks of three locations of the Gyeonggi Massif. The ages obtained from the upper and lower intersections between concordia curve and discordia lines made of the zircon fractions separated from the rocks of each locality we: $2168\pm$24 Ma and $1227\pm$40 Ma for the Yongduri Gneiss Complex, $1955\pm$22 Ma and $493\pm$32 Ma for the Euiam Group, and $3712\pm$244 Ma and $1613\pm$51 Ma for the Yongmunsan Group (2$\sigma$ errors). The upper intercept ages from the Yongduri Gneiss Complex and the Euiam Group of Gyeonggi massif are very similar to those obtained from the granitic gneisses and the porphyroblastic gneisses of Yeongnam massif respectively. Such similarities suggest that Gyeonggi and Yeongnam massifs might situate under the similar tectonic and geographic environment during ca. 2.2-1.9 Ga. The upper intercept age of Youngmunsan Formation (3.7 Ga) shows large error, because most of the zircon fractions are plotted very close to the lower intersection. It is necessary to investigate further to confirm this age. However, It may suggest the possibility of occurrence of the oldest crust of the northeast Asia similar to the one reported recently from the northeast China. The lower intercept age of the Yongmunsan Group is interpreted to indicate strong metamorphism. Such age postdates the 1.85-1.7 Ga metamorphism and igneous activities occurred in the Yeongnam massif, which might record the late Paleoproterozoic tectonic activities simultaneously occurred in both massifs.

  • PDF

Nature of contact between the Ogcheon belt and Yeongnam massif and the Pb-Pb age of granitic gneiss in Cheondong-ri, Danyang (단양 천동리 지역 옥천대/영남육괴의접촌관계와 소위 화강암질 편마암의 Pb-Pb 연대)

  • 권성택;이진한;박계헌;전은영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.144-152
    • /
    • 1995
  • The Jangsan Quartzite of the Joseon Supergroup and the foliated granite (so-called granitlc gneiss of presumed Precambrian age) of the Yeongnam massif are in direct contact at Cheondong-ri area, 6 km @SE of Danyang. sllthough it has been thought traditionally that the Jangsan Quartzite overlies unconformably the f&ted granite, it is difficult to interpret the contact as an unconformity smce the basal conglomerate in- the lower part of the Jangsan Quartzite does not have any clast of the foliated granite, Rather, recent structural studies of this area indlcate that the contact is a ductile shear zone. However, the sense and age of the shear movement are still problematic. Our mesoscopic and microscopic studies of &tre Cheondong-11 semi-brittle shear zone involving foliated cataclasite and phyllonite, which is a pa& of the Ogdong fault, indlcate a top-to-the northeast shearing, i.e., dextral strike slip. We also performed Pb-Pb dating for the age-unknown foliated granite, since the age of deformed granite ccarr emtrain the maximum age of deformation. The whole rock and feldspar Pb isotape data for the foliated granite and a micaceous xenolith define an isoc chron age of $2.16{\pm}0.15$ Ga ($2{\sigma}$;MSWD=4.4) which is interpreted as the emplacement age of the granite. This early Proterozoic age agrees with those of Precambrian igneous activity In the Yeongnam massif reported previously. The obtaiPrfid gge confirms the traditional idea about the age of the foliated granite and indicates that other methd(s) should be employed to constrain the age of the shear movement.

  • PDF