• Title/Summary/Keyword: Granitic gneiss

Search Result 128, Processing Time 0.021 seconds

Petrological and geochemical study of the Precambrian granitic gneiss in the Danyang- Yecheon area (단양-예천사이에 분포하는 선캠브리아 화강암질 편마암류의 암석학적 및 지구화학적 연구)

  • Yun Hyon Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.34-41
    • /
    • 1992
  • The Precambrian granitic gneisses are widely distributed in the Danyang-Yecheon area, eastern part of Korea, where the Ryeongnam massif borders the Ogcheon fold belt. They are composed of migmatitic, biotite granitic, garnet-bearing and granoblastic granitic gneisses. The common joint sets of the granitic gneiss are NE and NS directions, which are probably related to the effects of Daebo orogeny and Bulgugsa disturbance, respectively. Mineral assemblages of the banded gneiss xenolith in the garnet-bearing granitic gneiss are quartz-plagioc1ase-biotite-mus-covite-orthoclase and quartz-plagioc1ase-biotite-garnet, belonging to the amphibolite facies. The granoblastic granitic gneiss is felsic, metaluminous, and granitic, and shows subalkaline trend. The garnet-biotite geothermometry of garnet-bearing granitic gneiss yields 640$^{\circ}$-708$^{\circ}C$ at pressure of 4 kb.

  • PDF

Petrochemicla Study on the Granitic Gneiss in the Gurye-Suncheon , Korea (구례-순천간에 분포하는 화강암질편마암의 암석화학적 연구)

  • 조규성
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.173-180
    • /
    • 2000
  • Main aims of this study are to clarify petrochemistry of the granitic gneiss in the Durye-Suncheon area. The origin of the metamorphic rock is evaluated from the abundance of $Na_2O$, the $TiO_2$/$Al_2O_3$ratios, the Harker variation diagram and $Al_2O_3$($Na_2O$ +$K_2O$ + CaO) ratios of the major elements. and the frequency distribution and average abundance of the trace elements . The trace elements of the granitic gneiss in the studied area are compared with those of the granitic rocks with shales in the other areas. The abundance of $Na_2O$ is lower than 3.27% and the $TiO_2$/$Al_2O_3$ ratio is 0.04. Also the Harker's variation diagram indicate this granitic gneiss correspond to sedimentary origin or S-type granite. The average abundance for trace elements of the granitic gneiss is similar to that of the shale, and the frequency distribution shows extensive distribution and irregularly . But xenolith are observed in the field survey, it is evidence of igneous origin , and then origin of the granitic gneiss in studied area is S-type granite.

  • PDF

Metamorphism of the Buncheon and Hongjeas Granitic Gneisses (분천과 홍제사 화강암질 편마암체의 변성작용)

  • 김형수;이종혁
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.61-87
    • /
    • 1995
  • On the basis of lithology, the Precambrian Hongjesa Granitic Gneiss can be locally zoned into granoblastic granitic gneiss, porphyroblastic granitic gneiss, migmatitic gneiss from its center to the marginal part. There are no distinct differences in mineral assemblages by lithologic zoning, but it partly shows the change of mineral assemblage in the adjacent with migmatitic gneiss, thus mineral assemblage can be subdivided into Zone I and Zone II. In terms of mineral compositions, the characteristics of Zone I are coexisting K-feldspar+muscovite+sillimanite. The characteristics of Zone II are (1) breakdown of muscovite, (2) coexisting garnetScordierite, (3) coexisting garnet+cordierite + orthoamphibole. The Buncheon Granitic Gneiss is mainly composed of augen gneiss. In the adjacent area with Honjesa Granitic Gneisses, Buncheon Granitic Gneiss has the mineral assemblage of sillimanite+biotite+K-feldspar+(kyanite). Kyanite occurs as relict grains in the Buncheon and Hongjesa Granitic Gneissess. Kyanite shows anhedral to subhedral form and coexists with sillimanite in only one of these samples. Garnet from a migmatitic gneiss (Zone 11) has relatively high $X_{Fe}$ value in core and rim. Garnet from a porphyroblastic granitic gneiss(Zone I) has relatively homogemeous core but compositionally-zoned rim. Biotites show various colour from greenish-brown, brown to reddish brown at maximum adsorption. Also, the Ti, and Mg content in biotites increases from Zone I to Zone II. The plagioclases shows the chemical composition of $Ab_{84}An_{16}$ -$Ab_{70}An_{30}$ (oligoclase) in Zone I and $Ab_{70}An_{30}$ -$Ab_{50}An_{50}$(andesine) in Zone 11. These variations indicate that the gneisses in the study area experienced a upperamphibolite facies. The presence of kyanite as relict grains indicates that the metamorphic rocks in this area exprienced a high-temperature/medium-pressure type metamorphism, followed by high-temperaturellow-pressure metamorphism. Metamorphic P-T conditions for each gneiss estimated from various geothermobarometers and phase equilibria are 698-$729^{\circ}C$/6.3-11.3 kbar in augen gneiss, 621-$667^{\circ}C$/1.0-5.4 kbar in migmatitic gneiss, and 602-$624^{\circ}C$/1.9-3.4 kbar in porphyroblastic granitic gneiss. These data suggest that the study area was subjected to a clockwise P-T path with isothermal decompression (dP/dT=about 60 bar/$^{\circ}C$).

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Metamorphic evolution of granitic and porphyroblastic gneisses in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif (소백산 육괴 서남부인 승주-순천 일대의 화강암질 편마암과 반상변정질 편마암의 변성진화과정)

  • 오창환;전은영;박배영;안건상;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.121-141
    • /
    • 2000
  • Granitic and pophyroblastic gneisses are widely distributed in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif. Two groups of metamorphic P-T conditions are recognized from granitic gneiss. $622-760^{\circ}C/6.2~7.4\;kbar$(Group I) are estimated from garnet cores and samples with weak retrograde metamorphism. $606~785^{\circ}C/3.7~5.4\;kbar$(Group II) are estimated from garnet rims which have lower pyrope and higher spessartine contents due to the effect of retrograde metamorphism. The metamorphic P-T conditions estimated from porphyroblastic gneiss are $489~669^{\circ}C$, 2.1~4.8 kbar which are similar to the P-T conditions of Group II in the granitic gneiss. The whole rock-garnet Sm/Nd isotopic ages determined from granitic and porphyroblastic gneisses are, respectively, $1417{\pm}52\;Ma\;and\;1421{\pm}14\;Ma$. These date indicate that intermediate-P/T type metamorphism represented by Group I may have occurred between the intrusion of granite gneiss and the intrusion of porphyroblastic gneiss(between 1890 Ma~2120 Ma) and two gneisses experienced low-P/T type metamorphism after the intrusion of porphyroblastic gneiss at 1417~1421 Ma.

  • PDF

Geochronology and Petrogenetic processes of the so-called Hongjesa granite in the Seogpo-Deogku Area (석포(石浦)-덕구간(德邱間)에 분포(分布)하는 소위(所謂) 홍제사화강암(洪濟寺花崗岩)의 지질연대(地質年代)와 생성과정(生成過程)에 대(對)한 硏究(연구))

  • Kim, Yong Jun;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.16 no.3
    • /
    • pp.163-221
    • /
    • 1983
  • Main aspects of this study are to clarify geochronology and petrogenetic processes of the so-called Hongjesa granite, which is a member of various intrusive rocks exposed in the northeastern part of the Ryongnam Massif, one of the Precambrian basements of South Korea. In this study, the Hongjesa grainte is divided into four rock units based on the geologic age, mineralogical and chemical constituents, and texture: the Precambrian Hongjesa granite gneiss (Hongjesa granite Proper) and leucogranite gneiss, the Paleozoic gnessic two mica granite, and the Jurassic muscovite granite. The Hongjesa granite gneiss is identified by its grayish color, slight foliation, and porphyroblastic texture. The leucogranite gneiss is distinct by its light gray color, sand medium to coarse grained texture. The gneissic two mica granite is distinguished from others by its strong foliation, containing gray-colored feldspar phenocrysts with biotite and muscovite in varying amounts. The muscovite granite occurs as a small stock containing feldspar phenocrysts along margin of the stock. These granitic rocks vary widely in composition, reflecting the facts that they partly include highly metamorphosed xenolith and schlierens as relics of magmatic and anatectic processes. In particular, grayish porphyroblasts of microcline perthite is characteristic of the Hongjesa granite gneiss, whereas epidote and garnet occur in both the Hongjesa granite gneiss and leucogranite gneiss. These minerals are considered to be formed by potassic metasomatism and contamination of highly metamorphosed rocks deeply buried under the level of the Hongjesa granite emplacement. The individual synchronous granitic rocks plotted on Harker diagram show mostly similar trends to the Daly's values. The plots of the Hongjesa granite gneiss and gneissic two mica granite concentrate near the end part of the calc-alkalic rock series on the AMF diagrams, whereas those of the leucogranite gneiss and muscovite granite indicate the trend of the Skaergaard pluton. These granitic rocks plotted on a Q-Ab-Or diagram (petrogeny's residua system) fall well outside the trough of the system. This can be attributed to the potassic matasomatism of these rocks. On the ACF diagram, these rocks appear to be dominantly I-type prevailing over S-type. The K-Ar ages, obtained from a total of 7 samples of the leucogranite gneiss, gneissic two mica granite, muscovite granite, porphyritic alkali granite, and rhyolitic rock, in addition to the Rb/Sr ages of the Hongjesa granite gneiss by previous workers, permit the rock units to be arranged in the following chronological order: The middle Proterozoic Hongjesa granite gneiss (1714-1825 m.y.), the upper proterozoic leucogranite gneiss (875-880 m. y.), the middle Paleozoic gneissic two mica granite (384 m. y.) the upper Jurassic muscovite granite (147 m. y.), the Eocene alkali granite (52 m. y.), and the Eocene rhyolitic rock (45 m. y.). From the facts and data mentioned above, it is concluded that the so-called Hongjesa granite is not a single granitic mass but is further subdivided into the four rock units. The Hongjesa granite gneis, leucogranite gneiss, and gneissic two mica granite are postulated to be either magmatic or parautochtonous, intrusive, and the later muscovite granite is to be magmatic in origion.

  • PDF

Characteristics of the Small Scale Leucocratic Granites in the Eastern Parts of the Taebaegsan Region, Korea (태백산 지역 동부에 분포하는 소규모 우백질 화강암체의 특징)

  • Yoo, Jang-Han;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Precambrian granitic gneisses and Cambrian meta-sedimentary rocks are prevalently distributed in the eastern part of the Taebaegsan region, and biotite granitic batholith of the Jurassic period (?) is found in the southern part of Uljin-si. But small scale leucocratic granitic stocks which commonly found here and there have been rather neglected in the previous studies. The presence of leucocratic granites could be differentiated from the older granitic rocks and biotite granite through the outcrop characteristics, mineral species and geochemical compositions. For the effective comparison between the older granitic rocks and leucocratic ones, pale gray to gray coloured Hongjesa granitic gneiss with granular texture was selectively chosen. The Hongjesa granitic gneiss and biotite granite usually have rather plenty of coloured minerals such as biotite and chlorites. But the leucocratic granites often show sericitic alteration due to the albitization and greisenisation during the post-magmatic alteration, and shows rather bright appearance because of poor amount of coloured minerals. Since all of granitic rocks passed rather high degrees of magmatic differentiation, they belong to calc-alkalic and peraluminous in their characters. Among the alkali elements of the leucocratic rocks $K_2O$ shows higher increase than those of the other granitic rocks, and $Na_2O$ only represents slight decrease than those of the Hongjesa granitic gneiss and Uljin granite. On the other hand, CaO and total Fe content are clearly decreased than those of the Hongjesa granitic gneiss and Uljin granite.

Petrological Study and Provenance Estimation on the Stone Materials from Outer Rampart of the Namhansanseong Fortress, Korea (남한산성 외성 성벽부재에 대한 암석학적 연구 및 산지추정)

  • Park, Sang Gu;Park, Sung Chul;Kim, Jae Hwan;Jwa, Young-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The preservation treatment for the outer rampart of Namhansanseong fortress is needed due to partial collapse and separation of stone materials. In this study, we investigated the petrological features of the stone materials used for the outer rampart and estimated their provenances through the geologic survey. Through the above study, the suitable replacement stone in the maintenance of outer rampart were suggested. The stone materials of the above outer rampart consist of the banded gneiss, augen gneiss, granitic gneiss and porphyroblastic gneiss. Among these four kinds of rocks, granitic gneiss is quantitatively the most abundant. Petrological comparisons between stone materials and rocks distributed around the fortress, lead to the conclusion that the above materials are likely to have been delivered from around the fortress. Judging from the results of the comparison on frequency of use and strength characteristics among the above rocks, the granitic gneiss is considered to be suitable for restoration of the outer rampart of the fortress.

Assessment of Compressive Strength of Granitic Gneiss Using Nondestructive Testing based on Sound Energy (사운드에너지 기반 화강편마암의 비파괴 압축강도 산정)

  • Son, Moorak;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.5-10
    • /
    • 2018
  • This study provides a method to assess the compressive strength of granitic gneiss using total sound signal energy, which is calculated from the signal of sound pressure measured when an object impacts on rock surface, and its results. For this purpose, many test specimens of granitic gneiss were prepared. Each specimen was impacted using a devised device (impacting a specimen by an initial rotating free falling and following repetitive rebound actions) and all sound pressures were measured as a signal over time. The sound signal was accumulated over time (called total sound signal energy) for each specimen of granitic gneiss and it was compared with the directly measured compressive strength of the specimen. The comparison showed that the total sound signal energy was directly proportional to the measured compressive strength, and with this result the compressive strength of granitic gneiss can be reliably assessed by an estimation equation of total sound signal energy. Furthermore, from the study results it is clearly believed that the compressive strength of other rocks and concrete can be assessed nondestructively using the total sound signal energy.

Characteristics of Physical Properties of Rocks and Their Mutual Relations (암석의 종류와 방향에 따른 물리적 특성과 상호관계)

  • 원연호;강추원;김종인;박현식
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.