• 제목/요약/키워드: Gram-negative binding protein

검색결과 24건 처리시간 0.021초

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Porphyromonas gingivalis에서의 Hemin 결합 단백질 유전자의 특성 연구 (Characterization of the Gene for the Hemin-Binding Protein from Porphyromonas Gingivalis)

  • 김성조
    • Journal of Periodontal and Implant Science
    • /
    • 제29권3호
    • /
    • pp.663-676
    • /
    • 1999
  • Porphyromonas gingivalis, a Gram negative, anaerobic, asaccharolytic rod, is one of the most frequently implicated pathogens in human periodontal disease and has a requirement for hemin for growth. A 30 kDa (heated 24 kDa) hemin-binding protein whose expression is both hemin and iron regulated has recently been purified and characterized in this oral pathogen. This study has identified a hemin-binding P. gingivalis protein by expression of a P. gingivalis genomic library in Escherichia coli, a bacterium which does not require or transport exogenous hemin. A library of genomic DNA fragments from P. gingivalis was constructed in plasmid pUC18, transformed into Escherichia coli strain $DH5{\alpha}$ , and screened for recombinant clones with hemin-binding activity by plating onto hemin-containing agar. Of approximately 10,000 recombinant E. coli colonies screened on LB-amp-hemin agar, 10 exhibited a clearly pigmented phenotype. Each clone contained various insert DNA. The Hind III fragment transferred to the T7 RNA polymerase/promoter expression vector system produced a sligltly smaller (21 kDa) protein, a precursor form, immunoreactive to the antibody against the 24 kDa protein, suggesting that the cloned DNA fragment probably carried an entire gene for the 24 kDa hemin-binding protein.

  • PDF

Biological Function of Lactoferrin in Milk

  • Kei-Ichi, Shimazaki
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.37-42
    • /
    • 2002
  • Lactoferrin is an iron-binding glycoprotein and its bacteriostatic and bactericidal effects on Gram-positive and Gram-negative bacteria have been well-known. However, certain kind of lactic acid bacteria are resistant against its antibacterial effects. Moreover, it is reported that lactoferrin promotes the growth of bifidobacteria by in vitro and in vivo experiments. In this experiment, lactoferrin-binding protein was found both in the membrane and cytosolic franctions of Bifidobacterium. Bifidobacterium was grown in anaerobic conditions in MRS broth containing cysteine, gathered by centrifugation and processed by sonication. The lactoferrin-binding proteins on the PVDF-membrane transferred after SDS-PAGE were detected by far-western method using biotinylated lactoferrin and streptavidin-labeled horse radish peroxidase. Observation in growth effects of lactoferrin on Bifidobacterium suggested that there is a relation between the presence of lactoferrin-binding proteins on the cells and their growth.

  • PDF

A Ser/Thr Specific Protein Kinase Activates the Mouse Rantes Gene after Lipolpolysaccharide STimulation

  • Kim, Youn-Uck;Kim, Youn-Hwoan;An, Duek -Jun;Kwon, Hyuk-Chu
    • Journal of Microbiology
    • /
    • 제39권4호
    • /
    • pp.314-320
    • /
    • 2001
  • Macrophages stimulated by lipopolysaccharide(LPS) from gram negative bacteria undergo activation of a group of immediate early genes including Rantes. The mouse Rantes gene promoter region contains an LPS rsponsive element(LPE) We detected 3 specific bands termed B1, B2 and 3 formed by the interaction of the LPE and proteins found in LPS-stimulated RAW 367.7 cells. An additional band B4 was determined to be an Ap-1 binding protein. The B1 band appears within 1 hour of LPS nuclear extracts from LPS-stimulation, and this protein kinase enhances B1 and formation. The B1 band can be converted to band B2/B3 by adding specific heparin column fraction purified Ser/Thr specific protein phosphatases PP-1 and PP-2A can stimulate the same conversion to about the same extent. Thus, the formation of the LRE sequence binding complex appears to be regulated by Ser/Thr protein kinase and one or more Ser/Thr specific phosphatases. At least four proteins are involved in the trgulation of the LRE-dependent Rants experssion: two binding factors that bind directly to the target sequences. and two factors that control their binding. The future purification and characterization of these binding pro-teins will reveal in detail the mechanism of Rantes gene activation after LPS stimulation.

  • PDF

Agglutination Activity of Fasciola gigantica DM9-1, a Mannose-Binding Lectin

  • Phadungsil, Wansika;Grams, Rudi
    • Parasites, Hosts and Diseases
    • /
    • 제59권2호
    • /
    • pp.173-178
    • /
    • 2021
  • The DM9 domain is a protein unit of 60-75 amino acids that has been first detected in the fruit fly Drosophila as a repeated motif of unknown function. Recent research on proteins carrying DM9 domains in the mosquito Anopheles gambiae and the oyster Crassostrea gigas indicated an association with the uptake of microbial organisms. Likewise, in the trematode Fasciola gigantica DM9-1 showed intracellular relocalization following microbial, heat and drug stress. In the present research, we show that FgDM9-1 is a lectin with a novel mannose-binding site that has been recently described for the protein CGL1 of Crassostrea gigas. This property allowed FgDM9-1 to agglutinate gram-positive and -negative bacteria with appropriate cell surface glycosylation patterns. Furthermore, FgDM9-1 caused hemagglutination across all ABO blood group phenotypes. It is speculated that the parenchymal located FgDM9-1 has a role in cellular processes that involve the transport of mannose-carrying molecules in the parenchymal cells of the parasite.

In Vitro Selection of RNA Aptamer Specific to Salmonella Typhimurium

  • Han, Seung Ryul;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.878-884
    • /
    • 2013
  • Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity ($K_d$ ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • 제31권1호
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Molecular identification and expression analysis of bactericidal permeability-increasing protein/ LPS-binding protein (BPI/LBP) from Black rockfish Sebastes schlegeli

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Park, Chan-Il
    • 한국어병학회지
    • /
    • 제23권3호
    • /
    • pp.323-334
    • /
    • 2010
  • Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) are important components of the mammalian innate defence system against Gram-negative infections. The BPI/LBP cDNA was identified from the black rockfish ConA/PMA or LPS stimulated leukocyte cDNA library. The full-length BR-BPI/LBP cDNA was 2118 bp long and contained an open reading frame (ORF) of 1422 bp that encoded 473 amino-acid residues. The 5' UTR had a length of 57 bp, and the 3' UTR 639 bp. The molecular weight and theoretical isoelectric point (pI) values were calculated 51.4 kDa and 9.72, respectively. Compared with other known BPI or BPI/LBP peptide sequences, the most conserved regions of the black rockfish BPI/LBP peptide were found to be the BPI1 N-terminal, BPI2 C-terminal domains and a LPS binding domain. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the BPI/LBP sequence of black rockfish and that of other teleosts. The black rockfish BPI/LBP gene was predominantly expressed in the PBLs, head kidney, trunk kidney and spleen. The expression of the black rockfish BPI/LBP molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following LPS stimulation, with a peak at 12 h post-stimulation.

Cleavage-Dependent Activation of ATP-Dependent Protease HslUV from Staphylococcus aureus

  • Jeong, Soyeon;Ahn, Jinsook;Kwon, Ae-Ran;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제43권8호
    • /
    • pp.694-704
    • /
    • 2020
  • HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium Staphylococcus aureus with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.

Pharmacokinetics and Bioavailability of Oral Cephalosporins, KR-984055 and its Prodrugs, KR-999001 and KR-999002, in the Red

  • Park, Yong-Soon;Woo, Su-Kyung;Jung, Myung-Hee;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.83-88
    • /
    • 2003
  • KR-984055 is a new oral cephalosporin antibiotic with activity against both gram-positive and gram-negative bacteria. Lipophilic ester-type prodrugs of KR-984055, i.e., KR-999001 and KR-999002, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antibiotic agent. In this study we determined the oral bioavailability of KR-984055 and its prodrugs in the rat, and evaluated the pharmacokinetic model that best describes the plasma concentration behavior following single intravenous (IV) and oral single dose. In addition, concentrations in plasma as well as biliary and urinary recovery of KR-984055 were determined. Also, protein binding of KR-984055 in plasma was examined in vitro. The degree of protein binding of KR-984055 was in the range of 92.09~94.77%. KR-984055 exhibited poor oral bioavailability (7.02$\pm$1.58%). The observed oral bioavailabilities of KR-984055 from KR-999001 and KR-999002 were 38.77$\pm$2.81 % and 39.81$\pm$5.25%, respectively. These data were calculated from the levels of free KR-984055 in plasma. Oral KR-999001 and KR-999002 were not recovered from plasma, suggesting that it was readily cleaved to free KR-984055. KR-999001 and KR-999002 appear to be an efficient oral prod rug of KR-984055 that deserved further clinical evaluation in human.