• Title/Summary/Keyword: Gram-Schmidt orthogonal

Search Result 22, Processing Time 0.025 seconds

On-line identification algorithm for unknown linear MIMO systems (미지의 선형 MIMO 시스템에 대한 On-line 모델링 알고리즘)

  • 최수일;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.58-63
    • /
    • 1993
  • A recursive on-line algorithm with orthogonal ARMA identification is proposed for linear MIMO systems with unknown parameters, time delay, and order. This algorithm is based on the Gram-Schmidt orthogonalization of basis functions, and extended to a recursive form by using new functions of two dimensional autocorrelations and cross-correlations of inputs and outputs. The proposed algorithm can also cope with slowly time-varying or order-varying systems. Various simulations reveal the performance of the algorithm.

  • PDF

A Study on Design of Multivariable Equalizer for Transmission Distortion Compensation (전송왜곡보상용 다중가변등화기 설계에 관한 연구)

  • 김동석;최규훈;문홍진;김종교
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.921-928
    • /
    • 1990
  • A multivariable equalizer is designed which compensates transmission distortion for coaxial transmission line. The characteristic transfer function with bilateral parameter domain is approximated using the expansion method of orthonormal function and Gram Schmidt orthogonal function, but the parameter domain of approximated function is limited to unilateral. To solve that problem, Bode type transfer function is used to give bilateral variable characteristic to approximated function. The multivariable equalizer in this paper can be substituted for the current equalizer which consist of a fixed equalizer and a variable equalizer.

  • PDF

On-Line Identification Algorithm of Unknown Linear Systems (미지의 선형 시스템에 대한 On-Line 모델링 알고리즘)

  • 최수일;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.48-54
    • /
    • 1994
  • A recursive on-line algorithm with orthogonal ARMA identification is proposed for linear systems with unkonwn time delay, order, and parameters. The algorithm is based on the Gram-Schmidt orthogonalization of basis functions, and extendedto recursive form by using two dimensional autocorrelations and crosscorrelations of input and output with constant data length. The proposed algorith can cope with slowly time-varying or order-varying delayed system. Various simulations reveal the performance of the algorithm.

  • PDF

A Least Squares Approach to Escalator Algorithms for Adaptive Filtering

  • Kim, Nam-Yong
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.155-161
    • /
    • 2006
  • In this paper, we introduce an escalator (ESC) algorithm based on the least squares (LS) criterion. The proposed algorithm is relatively insensitive to the eigenvalue spread ratio (ESR) of an input signal and has a faster convergence speed than the conventional ESC algorithms. This algorithm exploits the fast adaptation ability of least squares methods and the orthogonalization property of the ESC structure. From the simulation results, the proposed algorithm shows superior convergence performance.

  • PDF

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Wiener-Hopf Equation with Robustness to Application System (응용시스템에 강건한 Wiener-Hopf 방정식)

  • Cho, Ju-Phil;Lee, Il-Kyu;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.245-249
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Complementary Beamforming Method Increasing Throughput in ECMA UWB AAS Systems (ECMA UWB AAS 시스템의 전송률 향상을 위한 보완 빔 방법)

  • Kim, Seok-Hyeon;Ji, Young-Gun;Lee, Hong-Won;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.827-835
    • /
    • 2007
  • In this paper, the extension method of data transmission range as adapting AAS(Adaptive Antenna Systems) in ECMA(European Computer Manufacturers Association) standard MB-OFDM(MultiBand-Orthogonal Frequency Division Multiplexing) UWB systems is proposed, and the complementary beamforming method which can solve hidden beam problem when we adapt AAS in CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) systems is proposed. To design the complementary beamforming, Gram-Schmidt orthogonalization is utilized, whose beam pattern exhibits perfect nulling at the main beam angles and provides uniform power for detection of channel utilization out of main beam. The proposed method can be utilized with any arbitrary beamforming when we make main beamforming. Through computer simulation, it can be shown that proposed AAS and complementary beamforming increase data transmission range from 2m to 3.95m in 480Mbps data transmission system and increase throughput about 20% as compared with general UWB AAS systems.

Free vibration analysis of elliptic and circular plates having rectangular orthotropy

  • Chakraverty, S.;Petyt, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.53-67
    • /
    • 1999
  • The natural frequencies and modes of free vibration of specially orthotropic elliptic and circular plates are analysed using the Rayleigh-Ritz method. The assumed functions used are two-dimensional boundary characteristic orthogonal polynomials which are generated using the Gram-Schmidt orthogonalization procedure. The first five natural frequencies are reported here for various values of aspect ratio of the ellipse. Results are given for various boundary conditions at the edges i.e., the boundary may be any of clamped, simply-supported or fret. Numerical results are presented here for several orthotropic material properties. For rectilinear orthotropic circular plates, a few results are available in the existing literature, which are compared with the present results and are found to be in good agreement.

Research on an Equivalent Wiener-Hopf Equation (등가의 Wiener-Hopf 방정식에 관한 연구)

  • Ahn, Bong-Man;Cho, Ju-Phil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.743-748
    • /
    • 2008
  • This paper makes a research on the equivalent Wiener-Hopf equation which can obtain the coefficient of TDL filter on orthogonal input signal in terms of mean square error. Using this result, we can present the coefficient and error of TDL filter directly without inverse orthogonalization process on orthogonal input signal. We make a theoretical analysis on MMSE and show an Wiener-Hopf solution and the proposed equivalent one in mathematical example simultaneously.

The Combined Method of Structure Selection and Parameter Identification of Equations of Motion to Analyze the Model Tests of a Submerged Body (몰수체 모형 시험 해석을 위한 운동방정식의 구조 선택 및 계수 식별 결합법)

  • C.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.20-28
    • /
    • 1998
  • To accurately predict the motion of a submergible, the nonlinear structure of dynamic model should be selected and corresponding parameters should be estimated using model test. Providing the model structure, only the values of parameters are unknown and the estimation can thus be formulated as a standard least square problem. Unfortunately, the nonlinear model structure of submersibles is rarely known a prior and method of model structure determination from measurement data of model test should be developed and included as a vital part of the estimation procedure. In this study, the well-known linear least square algorithm for the analysis of model tests and a way to measure the goodness are reviewed, and the identification algorithm based on an orthogonal decomposition method of Gram-Schmidt is extended to combine structure selection and maneuvering coefficients estimation in a very simple and efficient manner. Finally, the efficiency of this algorithm is verified by using simulation and applying to the analysis of model test of a submerged body. As a result, it was verified that this combined method might be very erective in selecting the structure of dynamic model estimating the maneuvering coefficients from measurement fiat of model test.

  • PDF