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In this paper, we introduce an escalator (ESC) 
algorithm based on the least squares (LS) criterion. The 
proposed algorithm is relatively insensitive to the 
eigenvalue spread ratio (ESR) of an input signal and has a 
faster convergence speed than the conventional ESC 
algorithms. This algorithm exploits the fast adaptation 
ability of least squares methods and the orthogonalization 
property of the ESC structure. From the simulation 
results, the proposed algorithm shows superior 
convergence performance. 
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I. Introduction 

Many researchers have studied various adaptive filter 
structures and coefficient-adjustment algorithms. The tapped 
delay line (TDL) filter structure using the least mean square 
(LMS) algorithm of Widrow and Hoff [1] has been widely 
used due to its simplicity in realization. One drawback of the 
LMS algorithm is that its convergence speed decreases as the 
ratio of the maximum-to-minimum eigenvalues of the input 
autocorrelation matrix increases. To cope with this problem, it 
has been proposed to orthogonalize the input signal using the 
Gram-Schmidt orthogonalization procedure, which can be 
implemented using the escalator (ESC) structure [2]. Though 
the ESC structure orthogonalizes the input signals, its 
coefficient adaptation algorithms have not been sufficiently 
studied for faster convergence speed. The LMS algorithm for 
the ESC in which mean squared local estimation errors are 
minimized is currently used in the ESC filtering problems [3], 
[4].  In this paper, we present a new fast adaptation algorithm 
for the ESC structure by introducing the least squares (LS) 
criterion to the local errors of the structure.  

The performance index for the mean squared error (MSE) 
criterion is defined as the expected value of the squared 
difference e(k) between the desired information symbol d(k) 
and the estimated information symbol y(k) at time k: 

)]([ 2 keEMSE = .              (1) 

In the MSE criterion, the tap weight coefficients of filter 
structures are adjusted to minimize the MSE. The derivation of 
the algorithms for adjusting the coefficients of the linear filter to 
minimize the MSE is based on a statistical approach. Instead of a 
statistical average, the performance index can be expressed in 
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terms of a time average. We can determine the coefficients of the 
filter that minimize the time-average weighted square error 
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where w represents weighting factor 0 < w < 1. 
By adopting the LS criterion to the ESC structure, 

minimizing J(k) with respect to the ESC coefficients, we 
propose an ESC algorithm that has fast convergence speed.   

II. Escalator Filter Structure  

In a given symmetric matrix, R, there exists a unit lower 
triangular (ULT) matrix, W, such that WRWT is a diagonal 
matrix. The ULT matrix W can be computed in the form of 

.... 11 WWWW NN −=  The ULT transformation )()( kXWkY ⋅=  
means that system W generates the uncorrelated output vector 
Y(k) for the input vector X(k), where its symmetric 
autocorrelation matrix ])()([ kXkXER T= . If we define 
X(k) as an input vector augmented with the desired sample d(k), 

TkdkxNkxNkxkX )](),(,...,)2(),1([)( +−+−= and 
TkekyNkyNkykY )](),(,...,)2(),1([)( +−+−= as an 

output vector augmented with the error sample e(k), 
)()( kXWkY ⋅=  becomes the filtering process of the ESC 

structure. 
We can realize the ULT transformation stage by stage as 

)()( 11 kXWkY ⋅= , )()( 122 kYWkY ⋅= , )()( 233 kYWkY ⋅= , 
and so on. The final stage’s output vector YN(k) becomes Y(k). 
For N=3, TkdkxkxkxkX )](),(),1(),2([)( −−= , =)(kY  

Tkekykyky )](),(),1(),2([ −− , and we can proceed to 
produce Y1(k), Y2(k), and Y3(k) sequentially as follows: 
 

 

Fig. 1. ESC filter realization for N=3. 
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and 
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The corresponding ESC filter realization for N = 3 is shown 

in Fig 1. The general ESC filter equations are  
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for ,1 ni ≤≤ ,11 +−≤≤ iNj ,jiNm −−= and 
.iNn −=  

For the escalator structure, the global minimization of the 
output energy can be accomplished as a sequence of local 
minimization problems, one at each stage of the escalator filters.  
Figure 2 shows the part of the escalator filter, which 
corresponds to the weight )(ki

jα . We can see that part of the 
escalator filter can be considered as a one-tap coefficient TDL 
filter. 

III. Escalator Coefficient Adaptation by MSE Criterion 

The escalator weight )(ki
jα , which can be considered as the 

coefficient of a one-tap TDL, can be optimized according to the 
MSE criterion or by employing the method of least squares. 
Suppose we adopt the MSE criterion and select the parameter 
to minimize the sum of the mean-square errors where the error 
is )(, mky ji − . In other words, the MSE is given as (7). 
 

 

Fig. 2. Part of the escalator filter with )(ki
jα . 
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Differentiation of MSE with respect to )(ki

jα  yields the 
solution,  
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It is instructive to note that each )(ki
jα  defined is in the 

form of a ratio whose numerator and denominator are cross-
correlation and autocorrelation (variance) terms, respectively. 

Thus, the denominator and numerator terms in (8) can be 
updated as the instantaneous cross-correlation functions via the 
single-pole low-pass system to yield adaptive escalator filter 
weights.  
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where 

),()()1()1()( 1,11,1,, nkymkykckc ijijiji −−−+−= −+−ββ (10) 

 )()1()1()( 2
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i
y

i
y −−+−= −ββ ,      (11) 

and 10 << β . The initial values of ci,j(k) and )(kv i
i are 

usually zero. 
Instead of estimating the cross-correlation functions by using 

the simple low-pass filter, we can use the steepest descent 
method with time-varying convergence parameter )(kiµ  [4] 
as the following: 

)()()()()1( 1,1, nkymkykkk ijii
i
j

i
j −−+=+ −µαα ,   (12) 

where )(/2)( kvk i
yi µµ = and )(kv i

y is estimated using a 
recurrence relation given by (11) for 10 << β . Here, the time 
constant of the LPF is determined by β , whereas the average 
time constant of the adaptation process of the LMS-type 
algorithm is dependent on µ . As β  becomes smaller, the time 
constant of the LPF decreases, which yields faster estimation of 
the signal power but a larger estimation noise in the steady state. 
For the sake of convenience, we call algorithm (12) LMS-ESC 
in this paper. 

IV. Escalator Coefficient Adaptation by LS Criterion 

The use of the least squares method leads to developing a 
recursive algorithm for the design of adaptive filters. The 
resulting algorithm is referred to as the recursive least squares 

(RLS) algorithm [5]. An important feature of the RLS 
algorithm is that it provides significantly faster convergence 
than the LMS algorithm. 

In this section, we propose to adopt the LS criterion to the 
local ESC filter structure for updating )(ki

jα . From (2) and 
Fig. 2, the performance index to be minimized is  
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Minimization of J(k) with respect to )(ki
jα  yields the 

solution  
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The numerator and denominator in (14) can be updated 
recursively in time as follows: 
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Then,  
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The inverse of B(k) can be rearranged as follows: 
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Thus, B-1(k)can be computed recursively according to (18). In 
(18), it is convenient to define g(k) as  
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Then, (18) becomes  
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By multiplying both sides of (20) by )(1,1 nkyi −− , we can 
acquire  
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Substituting (15) into (17) and using (20) yields  
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Rearranging (22) into a time-recursive equation of )(ki
jα , 

(22) produces 
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Substituting (20) into (23) and using (21) make (23) into the 
following:    
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Noting that )1()()( 1,11,1 −−−− −+− knkymky i
jiji α is the 

error, )(, mky ji − , )(ki
jα is updated recursively according to 

the relation (which we call RLS-ESC in this paper), 

),()()1()( , mkykgkk ji
i
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i
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Table 1. Comparison of the number of multiplications per output
sample. 

Algorithm Number of multiplications and divisions

LMS-TDL 2N + 1 

RLS-TDL 2.5N2 + 4.5N + 2 

LMS-ESC 3(N2 + N) 

RLS-ESC 4(N2 + N) 

 Note: N is the number of taps in TDL and the number of stages in ESC. 

where g(k) and B-1(k) are computed by (19) and (20), 
respectively. The initial value of B(k) is a small positive 
constant to avoid B(k) from being ill-conditioned. 

The performance improvement of the RLS algorithm is 
achieved at the expense of a large increase in computational 
complexity. For the RLS algorithm in the transversal filter 
(RLS-TDL), the number of computations (multiplications and 
divisions) is proportional to N2 [6]. The ESC filter structure 
with N stages has 0.5(N2+N) coefficients. From (11) and (12), 
LMS-ESC requires 5 multiplications and 1 division for the 
update of the local coefficient )(ki

jα . So, the number of 
computations per output sample in LMS-ESC with N stages is  
3(N2+N). The number of computations in RLS-ESC is 
4(N2+N), which can be computed in (19), (20), and (25). 
Notice that the adaptive algorithms for ESC do not have a large 
difference in complexity, but the ESC structure itself has a 
drawback of large computational complexity, which is 
proportional to N2. Table 1 lists the computational complexity 
of these adaptive algorithms. The corresponding graphs of the 
number of computations as a function of filter stages (taps in 
TDL) are shown in Fig. 3.  
 

Fig. 3. Computational complexity of adaptive algorithms. 
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V. Results and Discussions 

1. Channel Equalization 

In this section, the performances of adaptive equalization for 
two channels that have different eigenvalue spread ratio (ESR) 
values, and the performances of system identification for four 
different inputs, are compared. The algorithms considered are 
the LMS-TDL algorithm [1], LMS-ESC algorithm of (12), and 
RLS-ESC in (25). The equalization performance is 
investigated in polar form with 1)( ±=kd . All values are 
equiprobable. The random input signal d(k) is transmitted to  
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the channel, and the channel output is corrupted by the white 
Gaussian noise sequence. The adaptive equalizer has the task 
of correcting for the distortion produced by the channel in the 
presence of additive white noise. The impulse response hi of 
the channel model is 

]}/)2(2cos[1{
2
1 BWihi −+= π , 3,2,1=i ,     (26) 

where the parameter BW determines the channel bandwidth 
and controls the eigenvalue spread ratio of the correlation 
matrix of the inputs in the equalizer [5]. The eigenvalue spread 
ratio increases with BW. The experiment is carried out in two 
channels that are intended to evaluate the convergence 
performance of the algorithms using the TDL and ESC 
structures to changes in the eigenvalue spread.  

Channel 1: BW=3.1, ESR=11.12, and 
Channel 2: BW =3.3, ESR=21.71. 

The LMS-TDL equalizer has 11 tap coefficients. The LMS-
ESC and the proposed algorithm consist of 11 stages. A zero 
mean white Gaussian noise sequence with variance 0.001 was 
added to yield the equalizer input. The convergence parameter 
for the LMS-TDL was 2µ=0.02. The convergence parameter 2µ 
and smoothing parameter β for LMS-ESC are 0.02 and 0.99, 
respectively. The weighting factor w for the proposed algorithms 
based on the LS criterion is 0.99. These convergence parameter 
values for those algorithms were determined experimentally so 
that the related steady-state mean squared errors were the same. 
MSE learning curves were obtained by ensemble averaging over 
500 independent trials of the experiment. 

We see in Figs. 4 and 5 for equalization that increasing the 
ESR has the effect of increasing the steady-state MSE value of 
the algorithms and slowing down the rate of the convergence 
of the LMS-TDL equalizer algorithm. In channel 1, 
approximately 900 samples are required for the LMS-TDL to 
converge, and in channel 2, LMS-TDL requires far more than 
900 samples to converge. On the other hand, the algorithms 
having the ESC structure show no slowing down of their 
convergence speed. In both cases, the proposed algorithm has 
shown more rapid convergence than the LMS-ESC. The LMS-
ESC converges after about 300 samples, but RLS-ESC 
requires about 100 samples. The steady-state values of ESC 
algorithms are relatively insensitive to variations in ESR.     

In both channels, LMS-TDL is subject to severe 
performance degradation and has shown much slower 
convergence in channel 2. The ESC algorithms show no 
slowing in their convergence speed in both channels. Though 
increasing the ESR has the effect of increasing the steady-state 
MSE value of the algorithms, the steady-state values of ESC 
algorithms are relatively insensitive to ESR variations  

 

Fig. 4. Convergence performance of equalization for eigenvalue 
spread ratio (ESR) = 11.12. 
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Fig. 5. Convergence performance of equalization for eigenvalue 
spread ratio (ESR) = 21.71. 
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compared to the LMS-TDL. 

2. System Identification 

In system identification applications of adaptive filtering, the 
desired signal is derived by passing the input through a finite 
impulse response (FIR) filter (the unknown system) of length 9. 
The impulse response of the unknown system is chosen to 
follow a triangular wave form that is symmetric with respect to 
the center tap point [5]. The order of the adaptive filters is also 
N=9. The additive white noise, uncorrelated with the input, is 
added to the output of the unknown system so that the signal-
to-noise ratio is 100 dB. The inputs are generated by filtering 
white noise with one of four order-32 linear phase FIR noise-
coloring filters. The frequency magnitude responses of the 
coloring filters are shown in Figs. 6(a) through 6(d) [4]. These  
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Fig. 6. Frequency magnitude responses of the coloring filters. 
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Fig. 7. MSE learning curves for the system identification
simulations with input A. 
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Fig. 8. MSE learning curves for the system identification
simulations with input B. 
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coloring filters generate considerable variations in the input 
statistics required to verify the performance of the proposed 
algorithm. MSE learning curves were obtained by ensemble 
averaging over 500 independent trials of the experiment, as in 
the simulation of channel equalization.  

The MSE learning curves for the four inputs are shown in 
Figs. 7 through 10. The convergence parameter for the LMS-
TDL was 2µ=0.002. The convergence parameter 2µ and 
smoothing parameter β for LMS-ESC are 0.02 and 0.98, 
respectively. The weighting factor w for RLS-ESC is 0.98. 

For all the input signals, the proposed RLS-ESC converges 
faster than the LMS-ESC. The LMS-TDL shows that it can 
not reach below -40 dB for any input, whereas the algorithms 
having the ESC structure converge rapidly to around -100 dB. 
The superior performance of the proposed algorithm can also 
be expected in our further research including echo 
cancellation problems because the echo cancellation with 
speech signals can be modeled as an adaptive system 
identification problem.   

In Fig. 11, MSE learning curves of RLS-ESC are shown to 
evaluate steady state values for the four different inputs. For the 
high-pass and low-pass input signals, the RLS-ESC converges 
to -100 dB, but for the bandpass input signals, it shows a small 
variation of steady state value up to 15 dB. These results 
indicate that the ESC structure gives fast convergence but still 
requires some methods to consolidate its performance 
robustness under varying input conditions. 
 

 

Fig. 9. MSE learning curves for the system identification 
simulations with input C. 
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Fig. 10. MSE learning curves for the system identification
simulations with input D. 
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Fig. 11. MSE learning curves for RLS-ESC with four inputs.  

VI. Conclusions 

In this paper, the anthor proposed a new escalator-coefficient 
adaptation algorithm that is relatively independent of the 
eigenvalue spread ratio and has faster convergence speeds than 
the conventional ESC algorithms. This algorithm adopts the 
least squares criterion to the ESC structure. It exploits the fast 
adaptation ability of the LS method and the orthogonalization 
property of the ESC structure. The simulation results show that 
the proposed algorithm has faster convergence speed than the 
LMS-ESC algorithm and it shows no slowing down of 
convergence speed when we increase the eigenvalue spread 
ratio of the channel. The steady-state values of ESC algorithms 
are relatively insensitive to ESR variations compared to the 
LMS-TDL. The improved performance indicates that the 
proposed algorithm does appear to be an attractive alternative 
to the MSE-criterion ESC algorithms for adaptive filtering with 

large eigenvalue disparity. But in system identification 
applications with the bandpass input signals, the proposed 
algorithm shows a small variation of steady state value. This 
indicates that the ESC structure still needs further research for 
performance robustness under varying input conditions. 
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