• Title/Summary/Keyword: Grain-size

Search Result 4,087, Processing Time 0.028 seconds

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Distribution and Pollution Status of Organic Matter and Heavy Metals in Surface Sediment Around Goseong Bay, a Shellfish Farming Area, Korea (패류양식해역인 고성만 주변 표층 퇴적물의 유기물과 중금속 분포 및 오염현황)

  • Lee, Garam;Hwang, Dong-Woon;Hwang, Hyunjin;Park, Jung-Hyun;Kim, Hyung-Chul;Kwon, Jung-No
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.699-709
    • /
    • 2017
  • We measured the grain size, total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in order to understand the spatial distribution and pollution level of organic matter and metals in surface sediment around Goseong Bay, a shellfish farming area, Korea. The surface sediments were composed of finer sediments such as mud and clay. The concentration of TOC, TN, and heavy metals were much higher in the innermost bay than in the mouth and outside of bay. The spatial distribution of organic matter and heavy metals and C/N ratio (5-10) in sediment showed that the organic matter and heavy metals in sediment of the study region were significantly influenced by oceanic origin organic matter and anthropogenic sources, respectively. Based on the results of four assessment techniques (sediment quality guideline, geoaccumulation index, pollution load index, ecological risk index), the sediments around the Goseong Bay were a little polluted for heavy metals and the high metal concentrations in the northern region of bay could adverse impact on benthic organisms in sediment. Thus, the systematic management plan for the improvement of water and sediment environment and the concentrated monitoring of pollutants for sustainable aquaculture and seafood safety around Goseong Bay are necessary in the future.

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

'Gwanghan', A New Forage Winter Oat Cultivar for the Mid-Southern Regions of Korea (중남부지역 적응 내한 다수 조사료용 월동귀리 신품종 '광한')

  • Han, Ouk-Kyu;Park, Tae-Il;Seo, Jae-Hwan;Park, Ki-Hun;Park, Hyong-Ho;Kim, Kyeong-Hoon;Kim, Ki-Jong;Ju, Jung-Il;Jang, Young-Jik;Park, Nam-Geon;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.226-230
    • /
    • 2010
  • 'Gwanghan' (Avena sativa L.), a winter oat for forage use, was developed by the breeding team at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2009. It was derived from a cross between 'Early80' and 'Gwiri23'. A parent, 'Early80', has early heading and high yielding, while Gwiri23 has mid-heading with large-size grain. Subsequent generations followed by the cross were handled in bulk and pedigree selection programs at Suwon and Yeoncheon, respectively. A line, 'SO96016-B-112-YB-12-7', was selected for earliness, cold tolerance, and good agronomic characteristics and designated as a line name of 'Gwiri64'. The line was subsequently evaluated for cold tolerance, earliness, and forage yield in four different locations, Yesan, Iksan, Kimjae, and Jeju, from 2007 to 2009, and finally named as 'Gwanghan'. Over 3 years, the average forage dry matter yield of 'Gwanghan' harvested at milk-ripe stage was $16.4MT\;ha^{-1}$, compared with $15.4MT\;ha^{-1}$ of check cultivar 'Samhan'. 'Gwanghan's' heading date is about 3 days earlier than that of check cultivar, and is adapted primarily for winter cultivation in the mid-southern regions of Korean peninsula.

A New Soybean Cultivar, "Wonkwang" with Sprout, High Yielding, Disease and Lodging Resistance (내병.내도복 다수성 나물콩 신품종 "원광")

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Kyong-Ho;Kim, Young-Jin;Kim, Tae-Soo;Kim, Jung-Gon;Yun, Hong-Tae;Moon, Jung-Kyung;Baek, In-Youl;Han, Won-Young;Kim, Hyun-Tae;Ko, Jong-Min;Kim, Yong-Duk;Kim, Dong-Kwan
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.158-162
    • /
    • 2009
  • "Wonkwang" is a new sprout-soybean cultivar developed from the cross between Danyeobkong and MS91001 at the Honam Agricultural Research Institute (HARI) and National Institute of Crop Science (NICS), RDA, in 2007. The preliminary, advanced and regional yield trials to evaluate the performance of Iksan 56 were carried out from 2003 to 2007. This cultivar has a determinate growth habit, purple flower, grayish brown pubescence, yellow seed coat, Grayish brown hilum, lanceolate leaflet shape and small seed size (10.9 g/100 seeds). The maturity date of "Wonkwang" is three days later than the check variety, "Pungsan". It has a good seed quality for soybean-sprout and resistance to lodging. The soybean-sprouts grown from "Wonkwang" have high isoflavone ($3,481{\mu}g/g$)contents. This cultivar has resistance to soybean mosaic virus (SMV) and necrotic symptom (SMV-N) and other most troublesome soybean diseases which are bacterial pustule and black root rot. The grain yield of "Wonkwang"in the regional yield trials (RYT) for 3 consecutive years was averaged 3.05 ton per hectare, which was 8% higher than that of the check cultivar "Pungsan".

A New Early-Heading and High-Yielding Forage Winter Oat Cultivar, "Punghan" (내한 조숙 다수 추파 조사료용 귀리 신품종 "풍한")

  • Han, Ouk-Kyu;Park, Hyong-Ho;Heo, Hwa-Young;Park, Tae-Il;Seo, Jae-Hwan;Park, Ki-Hun;Kim, Jung-Gon;Ju, Jung-Il;Hong, Yun-Gi;Jeung, Jae-Hyun;Park, Nam-Geon
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.168-172
    • /
    • 2009
  • 'Punghan' (Avena sativa L.), a winter oat for forage use, was developed by the breeding team at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2008. It was derived from a cross between 'Beltsville 61-150 (IT133501)' and $F_1$ between 'Sikyonggwiri' and 'PA202-210'. A oat cultivar from USA, 'Beltsville 61-150', has a high cold tolerance, while the $F_1$ between 'Sikyonggwiri' and 'PA202-210' has early heading and high yielding with large-size grain. Subsequent enerations followed by the cross were handled in bulk and pedigree selection programs at Suwon and Yeoncheon, respectively. A line, 'SO99013-B-YB-31', was selected for earliness and good agronomic characteristics and designated as a line name of 'Gwiri 60'. The line 'Gwiri 60' was subsequently evaluated for winter hardiness, earliness, and forage yield in five locations, Yesan, Cheongwon, Iksan, Kimjae, and Jeju, from 2006 to 2008 and finally named as 'Punghan'. Over 3 years, the average forage dry matter yield of 'Punghan' harvested at milk-ripe stage was $14.5\;ton\;ha^{-1}$, compared with $13.6\;ton\;ha^{-1}$ of check cultivar 'Samhan'. 'Punghan' is about 2 days earlier in heading date than check cultivar. 'Punghan' is adapted primarily for winter planting use in the mid-southern regions of Korean peninsula.

Microstructure Related to the Growth of Rare-earth Mineral in the Eoraesan Area, Chungju, Korea (충주 어래산 지역에서 희토류 광물의 성장과 관련된 미구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.129-141
    • /
    • 2019
  • The Eoraesan area, Chungju, which is located in the northwestern part of Ogcheon Metamorphic Zone, Korea, mainly consists of the Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks which intruded it. The metaacidic rocks (MAR) of the Gyemyeongsan Formation show a maximum radioactive value, and the Early Jurassic biotite granite is regionally distributed in this area. In this paper is researched the microstructure related to the growth of rare-earth mineral of allanite in the MAR, and is considered the source and occurrence time of rare-earth element (REE) mineralization. The MAR is mainly composed of alkalic feldspar (mainly microcline), quartz, iron-oxidizing mineral, biotite, muscovite, plagioclase, hornblende, allanite, zircon, epidote, fluorite, apatite, garnet, (clino)zoisite etc. The radioactive elements contained in the allanite cause a dark brown hale in the surrounding biotite, and the allinte also occurs as aggregate along the regional foliation. The deflection of regional foliation and the strain shadows, which are common to the pre-tectonic porphyroblast grown before the formation of regional foliation, can't be observed around most allanites (aggregates). The grain size and orientation of ironoxidizing mineral included in the allanite aggregate are the same as those in the matrix. It is recognized the hydrothermal conversion of hornblende to biotite due to the intrusion of igneous rock, and the secondary biotite occurs and contacts with allanite, zircon, epidote etc. These microstructures indicate that the rare-earth mineral of allanite (aggregate) grew by the hydrothermal alteration due to the intrusion of igneous rock after the formation of regional foliation. It is considered that the REE mineralization is closely related to the intrusion of Early Jurassic biotite granite which is regionally distributed in this area.

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구)

  • Jang, Ki-June;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.80-85
    • /
    • 2019
  • Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

Provenance Study of 99MAP-P63 Core Sediments in the East China Sea (동중국해 99MAP-P63 코어 퇴적물의 기원지 연구)

  • Choi, Jae Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.257-266
    • /
    • 2018
  • East China Sea (ECS) is known to be supplied with large amounts of sediments form Huanghe, Changjiang and various rivers in Korea. Many studies have been conducted to identify the effects of rivers and deposition process of ECS, but no consensus has been reached. In this study, clay minerals, rare earth elements (REEs) and grain size were analyzed to study the provenance and sedimentation environment of core 99MAP-P63 in ECS. Clay mineral contents of 99MAP-P63 are abundant in order of illite, chlorite, kaolinite, and smectite. The provenance of 99MAP-P63 sediments using clay minerals is interpreted as the Changjiang regardless of depth. As a result of REEs analysis, 99MAP-P63 sediments are very similar to Chinese rivers sediments. Therefore, the provenance of 99MAP-P63 is Changjiang, and the influence of Korean river seems to be insignificant. 99MAP-P63 sediments are generally classified as sandy silt, but the top of the core is divided into sand with a sand contents of 85 %. Compared with surrounding cores, sandy silt sediments arecorresponded to the low stand stage when sea-level was low, and the sediments were thought to have been supplied directly through the paleo-Changjiang. Sandy sediments in uppermost of core are corresponded to transgressive stage. Although distance from estuary was increased due to sea-level rise, it was possible to supply coarse sediments due to high bottom stress, and the paleo-Changjiang sediments deposited in study area were re-deposited.