• Title/Summary/Keyword: Grain-refining

Search Result 57, Processing Time 0.028 seconds

Study on Prevention of Quench Crack in Martensitic High Carbon Tool Steel (고탄소 연구강의 잠입귀열 방지에 관한 연구)

  • 김학신;방성한;최종술;영형영
    • Journal of the Korean institute of surface engineering
    • /
    • v.14 no.3
    • /
    • pp.142-150
    • /
    • 1981
  • The present paper clarified mechanism of quench crack formation in high carbon steel dur-ing quenching, and, in order to prevent the quench crack, proposed two basic guides in alloy design of high carbon tool steel. They are to raise Ms temperature of high carbon tool steel by addition of alloying elemen-ts such as Al and Co, and to decrease grain size of the carbon tool steel by addition of alloying elements of Al, B, Ti, Zr, and V, and by grain-refining heat treatment.

  • PDF

The Effects of Ti-B Addition on the Unidirectional Solidification of Al (Ti-B 첨가(添加)에 의한 Al 의 응고조직(凝固組織)에 관(關)한 연구(硏究))

  • Song, Yeon-Soo;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.7 no.4
    • /
    • pp.358-365
    • /
    • 1987
  • To investigate the grain refining mechanism of Al by the addition of Ti-B, the unidirectional solidifications of 99.9%Al and 99.7%Al were performed under the condition of varing the pouring temperature. The solidification modes of Al were studied by the cooling curve analyses, metallographic and microprobe examinations. The results were as follows: 1) Grains were most refined with an addition of 0.15wt.%Ti-0.021wt.%B but the grain size with 0.2wt.%Ti-0.028wt.%B was increased. 2) The grain size of 99.7wt.%Al was even more refined than that of 99.9wt.%Al with the same amount of Ti-B. 3) As the pouring temperature increased, the grain size of pure Al and an alloy with 0.lwt.%Ti-0.014wt.%B was increased. However, an alloy with 0.2wt.%Ti-0.028wt.%B did not show any effects of temperature. 4) TiC(Al-Ti) and (Al-Ti-C) were identified as nucleants for Al.

  • PDF

Effects of Grain Refinement and Melt Stirring on the Mechanical Properties and Fluidity of Mg-Al Alloys (Mg-Al계 합금의 기계적 성질 및 유동도에 미치는 결정립 미세화 처리 및 용탕 교반의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.111-114
    • /
    • 2010
  • The effects of grain refinement and melt stirring on the mechanical properties and fluidity of AZ91D and AM50 alloys were investigated. The average grain sizes of those alloys were reduced by the micro-addition of strontium. The tensile properties and fluidity were increased by this treatment. Those were reduced remarkably by the melt stirring.

Effects of Zn, Zr Addition on Microstructures and Hardness of Mg/SiCp Composites Fabricated by Rheo-Compocasting (Rheo-Compocasting법으로 제조한 Mg/SiCp 복합재료의 조직 및 경도 특성에 미치는 Zn, Zr 첨가의 영향)

  • Hong, Sung-Kil;Choe, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.588-595
    • /
    • 1995
  • SiC particles reinforced Mg-Zr, Mg-Zn and Mg-Zn-Zr composites were manufactured by Rheocompocasting method. Effects of Zn, Zr addition on microstructures and hardness were investigated by using the micro Vickers hardness tester, the optical and scanning electron microscopy. By the Zr addition to the pureMg/SiCp composites, SiC particles become more homogeneously dispersed and grain refined so that the micro hardness of the composite increased. In case of Zn addition, although grain refinement and homogeneous dispersion effects of SiC particles were not obtained, hardness was more increased than the only Zr added composite by the formation of many Mg-Zn intermetallic compounds at grain boundary. In the Mg-Zn-Zr/SiCp composite, the highest value of hardness was obtained by triple effects such as grain refining, dispersion hardening of SiC particles and Mg-Zn compounds.

  • PDF

The Effect of Cold-rolling on Microstructure and Transformation Behavior of Cu-Zn-Al shape Memory Alloy (냉간가공에 의한 CuZnAl계 현상기억합급의 결정립미세화와 특성평가)

  • Lee, Sang-Bong;Park, No-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.322-326
    • /
    • 1999
  • In this study, cold-rolling and appropriate annealing was adopted for the grain refining of Cu-26.65Zn-4. 05Al-0.31Ti(wt%) shape memory alloy. For the cold deformation of this alloy the ducti1e $\alpha$-phase must be contained. After heat treatment at $550^{\circ}C$ the $(\alpha+$\beta)$-dual phase with 40vol.% $\alpha$-phase was obtained which could be rolled at room temperature. This alloy was cold rolled into a final thickness of 1.0mm with total reduction degrees of 70% and 90%. The rolled sheets were betanized at $800^{\circ}C$ for various times, then quenched into ice water. The grain size of co]d rolled samples were $60~80\mu\textrm{m}$ which is much smaller comparing with the hot-rolled samples. And the 90% rolled sample showed smaller grain size than the case of the 70% rolled one. The small grain size had influence on the phase transformation temperatures and stabilization of the austenitic phases.

  • PDF

A Study on Microstructure and Thoughness of Electrogas Weldments (일렉트로가스 용접부의 조직 및 인성에 관한 연구)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

Evaluation of ferritic stainless steel FCA overlay weld metal ductility (페라이트계 스테인리강의 FCA 육성용접부 연성 평가)

  • Kim Yeong-Il;Choi Jun-Tae;Kim Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.140-142
    • /
    • 2006
  • The bend ductility of Type 410S ferritic stainless steel overlay weld on carbon steel was investigated. Overlay weld that was stabilized with Nb had large columnar ferrite grain and Nb precipitate on grain boundary. And that caused fracture when bend test without concern of PWHT condition. Proper bend ductility at as-welded condition was achieved by refining ferrite grain with addition of $0.04{\sim}0.09%$ Al and $0.2{\sim}0.5%$ Ti that make oxide, carbide and nitride at high temperature.

  • PDF

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

Reduction of Grain Growth for Al6061 Alloy by the Die Cooling System in Hot Extrusion Process (Al6061 합금의 열간 압출공정에서 금형 냉각시스템에 의한 압출재의 결정립 성장 제어)

  • Ko, Dae-Hoon;Lee, Sang-Ho;Ko, Dae-Cheol;Kim, Ho-Kwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.673-680
    • /
    • 2009
  • In this study, die cooling system using the nitrogen gas has been applied to hot aluminum extrusion process for refining grains and reducing of grain growth. Computational fluid dynamics(CFD) has been carried out to evaluate die cooling effect by nitrogen gas, and the results of CFD have been used to FE-simulation for the prediction of the extrudate temperature in hot extrusion process. Experimental hot extrusion has been performed to observe microstructure and to measure temperature of extrudate. The results of FE-Simulation have been good agreement with those of experiment. Finally, process condition of hot extrusion can be established to reduce grain growth of Al6061 through the experiment.