• Title/Summary/Keyword: Grain-orientation

Search Result 349, Processing Time 0.033 seconds

Grain Size Effect on Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil;Chun, Myoungpyo
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.375-378
    • /
    • 2016
  • Characteristics of nanocrystalline materials are known substantially dependent on the microstructure such as grain size, crystal orientation, and grain boundary. Thus it is desired to have systematic characterization methods on the various nanomaterials with complex geometries, especially in low dimensional nature. One of the interested nanomaterials would be a pure two-dimensional material, graphene, with superior mechanical, thermal, and electrical properties. In this study, mechanical properties of "polycrystalline" graphene were numerically investigated by molecular dynamics simulations. Subdomains with various sizes would be generated in the polycrystalline graphene during the fabrication such as chemical vapor deposition process. The atomic models of polycrystalline graphene were generated using Voronoi tessellation method. Stress strain curves for tensile deformation were obtained for various grain sizes (5~40 nm) and their mechanical properties were determined. It was found that, as the grain size increases, Young's modulus increases showing the reverse Hall-Petch effect. However, the fracture strain decreases in the same region, while the ultimate tensile strength (UTS) rather shows slight increasing behavior. We found that the polycrystalline graphene shows the reverse Hall-Petch effect over the simulated domain of grain size (< 40 nm).

Grain orientation distribution of the ZrB $_{2 }$ - ZrCcomposite sintered by the different sintering technique (소결방법에 따른 ZrB $_{2 }$ - ZrC 복합체에서의 결정립 방위 분포의 변화)

  • ;Y. Yasutomi;Y. Takigawa;H. Yanagida
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2000
  • The crystallographic grain orientation of {{{{ { ZrB}_{2 } }}}}-ZrC composite sintered by pressureless a sintering(PLS) and spark plasma sintering (SPS) was analysed by the SEM-EBSP technique. In the case of PLS, (160) plane of {{{{ { ZrB}_{2 } }}}} was oriented to ND direction, (101) and (111) plane of ZrC were oriented to ND direction. In the case of SPS, (0001) plane of {{{{ { ZrB}_{2 } }}}} was strongly oriented to ND direction. Only (001) plane of ZrC was oriented to ND direction. The PLS specimen had weakly oriented grain structure and interface between {{{{ { ZrB}_{2 } }}}} and ZrC was found to be more stable than that of SPS but the SPS specimen had a preferentially oriented grain structure.

  • PDF

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power (플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화)

  • Ryu Hyun-Wook;Choi Gwang-Ryo;Noh Whyo-Sup;Park Yong-Ju;Kwon Yong;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Crystallographic Orientation Dependence of Sputtering Rate in Sendust Targets

  • Kim, Myong-Ryeong;Hum Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.167-171
    • /
    • 1995
  • The orientation dependence of sputtering rate in the sendust polysrystalline targets was studied, It was fount from the present work that the erosion process is not uniform from one grain to another even within a target because of its polysrystalline nature showing many different orientation of grains. The grains oriented to promote efficient erosion were characterized by the close-packed planes which have large interplanar spacing and strong binding energy, The characteristic line patterns appeared on as-sputter target surface are discussed in terms of symmetry of crystllographic planes.

  • PDF

Structural Properties of KLN Thin Film Deposited on Pt Coated Si Substrate (Pt 코팅된 Si 기판에 제조한 KLN 박막의 구조적 특성)

  • 박성근;이기직;백민수;전병억;김진수;남기홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.410-416
    • /
    • 2001
  • KLN thin films were fabricated on Pt coated Si(100) wafer using an rf-magnetron sputtering method. The grown KLN thin film consists of 4-fold grains. In this experiment, the structure of 4-fold grained thin film was investigated using XRD and SEM measurements. Pt layer was also deposited using the rf-magnetron sputtering method,. XRD measurement showed that he Pt thin film has Gaussian distribution form with strong (111) direction orientation. The KLN thin film has preferred-orientation of (001) direction, and the peak consists of 2 separate peaks; one with broad FWHM and the other with narrow FWHM. The sharp peak is due to single crystal, and combining with Em results, the 4-fold grain consists of singel crystals with c-axis normal to substrate.

  • PDF

Oriented Barium Titanate Ceramics Made from Fiber State Powder (섬유상 분말로 제조된 배향성을 가진 $BaTiO_3$ 세라믹)

  • 서용교;야나기다히로아끼
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1066-1070
    • /
    • 1993
  • When looked upon as a polycrystalline, ceramics have two basic differences from a single crystal. One is that there exist grain boundaries, the other is that the crystal axes of each small crystal are arranged in random directions. But the crystal axes fo small crystals which compose ceramics may be made to have the tendency of being arranged in a specific direction. This is called that the crystal axes are oriented. The degree of the direction arrangement of the crystal axes is called orientation. In order to orient the crystal axes effectively, the fiberous barium titanates were made through KDC method and the ion exchange method. And then they were arranged through pressing, doctor blade, and syringe. As the result of Lotgering evaluation, the sample oriented through syringe showed the highest orientation. After sintering, though the most particles that had been fiberous shaped became global shape viewed through SEM, the orientation of the crystals was reinforced by means of sintering.

  • PDF

Electron Scattering at Grain Boundaries in Tungsten Thin Films

  • Choe, Du-Ho;Kim, Byeong-Jun;Lee, Seung-Hun;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.2-243.2
    • /
    • 2016
  • Tungsten (W) is recently gaining attention as a potential candidate to replace Cu in semiconductor metallization due to its expected improvement in material reliability and reduced resistivity size effect. In this study, the impact of electron scattering at grain boundaries in a polycrystalline W thin film was investigated. Two nominally 300 nm-thick films, a (110)-oriented single crystal film and a (110)-textured polycrystalline W film, were prepared onto (11-20) Al2O3 substrate and thermally oxidized Si substrate, respectively in identical fabrication conditions. The lateral grain size for the polycrystalline film was determined to be $119{\pm}7nm$ by TEM-based orientation mapping technique. The film thickness was chosen to significantly exceed the electron mean free path in W (16.1 and 77.7 nm at 293 and 4.2 K, respectively), which allows the impact of surface scattering on film resistivity to be negligible. Then, the difference in the resistivity of the two films can be attributed to grain boundary scattering. quantitative analyses were performed by employing the Mayadas-Shatzkes (MS) model, where the grain boundary reflection coefficient was determined to be $0.42{\pm}0.02$ and $0.40{\pm}0.02$ at 293 K and 4.2 K, respectively.

  • PDF

Asymmetric Rolling as Means of Texture and Ridging Control and Grain Refinement (집합조직과 이랑형표면결함의 제어 및 결정립 미세화 수단으로서의 비대칭압연)

  • Lee D.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.11-18
    • /
    • 2004
  • Asymmetric rolling, in which the circumferential velocities of the upper and lower rolls are different, can give rise to intense plastic shear strains and in turn shear deformation textures through the sheet thickness. The ideal shear deformation texture of fcc metals can be approximated by the <111> // ND and $\{001\}<110>$ orientations, among which the former improves the deep drawability. The ideal shear deformation texture for bcc metals can be approximated by the Goss $\{110\}<001>\;and\;\{112\}<111>$ orientations, among which the former improves the magnetic permeability along the <100> directions and is the prime orientation in grain oriented silicon steels. The intense shear strains can result in the grain refinement and hence improve mechanical properties. Steel sheets, especially ferritic stainless steel sheets, and aluminum alloy sheets may exhibit an undesirable surface roughening known as ridging or roping, when elongated along RD and TD, respectively. The ridging or roping is caused by differently oriented colonies, which are resulted from the <100> oriented columnar structure in ingots or billets, especially for ferritic stainless steels, that is not easily destroyed by the conventional rolling. The breakdown of columnar structure and the grain refinement can be achieved by asymmetric rolling, resulting in a decrease in the ridging problem.

  • PDF

The Surface Recrystallization Behavior of Single Crystal CMSX-2 (단결정 CMSX-2의 표면재결정 거동)

  • Jo, Chang-Yong;Na, Yeong-Sang;Kim, Hak-Min;Kim, Woo-Yeol;Bae, Cha-Hurn;Lee, Sang-Lae
    • 연구논문집
    • /
    • s.23
    • /
    • pp.15-27
    • /
    • 1993
  • The single crystal specimens were solidified by modified Bridgeman method. The surface recrystallized single crystal specimens were prepared by shot peening followed by heat treatment. The surface recrystallization begins at the dendrite cores on the surface. The recrystallized grains grew into the inner side of the specimen. The growth of recrystallized grains was inhibited by the pores and eutectic phases. The primary $\gamma'$ phases were dissolved at the recrystallized grain boundaries during the grain growth. The grain growth of recrystallized grains was similar to the cellular type transformation. No orientation relationships were found bewteen the recrystallized grains and the parent phase.

  • PDF

The Study of Microstructure Influence at Fretting Contacts using Crystal Plasticity Simulation (결정 소성 시뮬레이션을 이용한 프레팅 접촉에서의 마이크로 구조 영향에 관한 연구)

  • Ko, Jun-Bin;Goh, Chung-Hyun;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.84-91
    • /
    • 2005
  • The role of microstructure is quite significant in fretting of Ti-6Al-4V since its material properties depend strongly on crystallographic texture. In this study, we adopt crystal plasticity theory with a 2-D planar triple slip idealization to account fur microstructure effects such as grain orientation distribution, grain geometry, as well as $\alpha$ colony size. Crystal plasticity simulations suggest strong implications of microstructure effects at fretting contacts.