• 제목/요약/키워드: Grain structure

검색결과 1,242건 처리시간 0.026초

고 망간강 2상 혼합조직의 열적 안정성에 관한 연구 (A Study on the Thermal Stability of Duplex High Mn-Steel Structure)

  • 위명용
    • 열처리공학회지
    • /
    • 제5권1호
    • /
    • pp.13-22
    • /
    • 1992
  • The thermal stability of duplex high Mn-steel structure have been investigated using 15%Mn~1.0~2.4%C steels which are composed of ${\gamma}$-and ${\theta}$-phases in the range of temperature from 900 to $1100^{\circ}C$, and time from 50 to 300h. The results are as follows ; 1) The grain growth in single-phase region proceeds by grain boundary migration and the relation between mean radius $\bar{r}$ and annealing time t is described as follows ; $\bar{r}^2-{\bar{r}_0}^2=k_0{\cdot}t$ 2) The grain growth of duplex, (${\gamma}+{\theta}$), strucrure is slower than that single phase because the chemical composition of ${\gamma}$-and ${\theta}$-phases differs esch others. 3) The grain of (${\gamma}+{\theta}$) duplex structure grow slowly in a mode of Ostwald ripening. Because grain boundaries of ${\gamma}$-phase migrate under a restriction of pinning by ${\theta}$-phases. 4) In the duplex structures. the dispersed structures change to the dual-structures, as the volume fraction of the dispersed second-phase increase. Consequently, the growth-law, which is controlled by boundary-diffusion change to that of the volume diffusion-mechanism.

  • PDF

저항 업셋 용접방식에 따른 Zircaloy-4 핵연료 피복재 용접부의 미세조직 특성 (Microstructural Characteristics of Zircaloy-4 Nuclear Fuel Cladding Welds by Resistance Upset Welding Processes)

  • 고진현;김상호;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.98-104
    • /
    • 2002
  • A study on microstructures of welds for Zircaloy-4 sheath end closure by the resistance upset welding methods was carried out. Two upset welding process variations such as magnetic farce and multi-impulse resistance welding were used. Grain size and microhardness across welds were analysed in terms of welding parameters. Magnetic farce resistance weld with one cycle of unbalanced mode has smaller upset length and $\alpha-grain$ size in heat affected zone than those of multi-impulse resistance weld because of lower heat input and shorter welding time. Heat affected zone formed by two upset resistance welding variations revealed fine Widmanstatten structure or martensitic ${\alpha}'$ structure due to the high heating rate and foster cooling rate. Magnetic force resistance welds showed recrystallized grains before grain growth, whereas multi-impulse resistance welds showed full grain growth.

Al-Mg-Si계 알루미늄 합금 판재 마찰교반접합부의 결정 방위 분포에 대한 용접후열처리의 영향 (Effect of Post Weld Heat Treatment for Crystal Orientation Distribution on Friction Stir Welds of Al-Mg-Si Series Aluminum Alloy Sheets)

  • 이광진
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.62-67
    • /
    • 2009
  • Friction stir welding (FSW) was carried out for Al-Mg-Si series aluminum alloys which are being used for automotive body structure. Consequently, Post weld heat treatment (PWHT) was applied to the friction stir welds to evaluate the effect of the paint baking process which is one of the automotive fabrication process on friction stir welded zone (FSWZ) in 443K for 1.2Ks. Grain structure and its crystal orientation distribution was measured about both the as welded specimens and the post weld heat treated specimens. An optical microscope (OM) and an field emission scanning electron microscope (FE-SEM) was used for observing the grain structure and measuring its crystal orientation distribution, respectively. Changes on the grain structure and its crystal orientation distribution were not detected. From the present results, it was confirmed that the paint baking process after FSW do not affect on the grain structure and its crystal orientation distribution of FSWZ. The comprehensive investigations will be performed for various automotive aluminum alloys manufactured by different processes, in the future.

EBSD에 의한 A1050 압연판재의 결정립 구조 분석 (Grain Structure Analysis in Rolled 1050 Al Alloy Sheets Using EBSD)

  • 한준현;신명철
    • 분석과학
    • /
    • 제14권1호
    • /
    • pp.50-58
    • /
    • 2001
  • 압연판재의 결정립 미세화를 위해 새롭게 도입된 극저온 강압연법을 극저온 압연법, 상온 강압연법과 비교 분석하였다. EBSD를 이용하여 결정립 구조를 분석하였으며, 결정립 크기를 측정하였다. 극저온 압연법과 상온 강압연법은 각각 39%와 87%의 결정립 크기 감소효과를 보였으며, 극저온 강압연법은 상온 강압연법과 비슷한 결정립 감소효과를 갖고 있었다. 따라서 강압연법이 극저온 압연법보다 결정립 미세화에 훨씬 더 효과적임을 알 수 있었다.

  • PDF

Altered Fine Structure of Amylopectin Is Induced by Exogenous Gibberellin During Rice Grain Ripening

  • Kim, Sang-Kuk;Park, Shin-Young;Lee, Sang-Chul;Lee, In-Jung
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.523-526
    • /
    • 2006
  • When $GA_{4}$ was applied to heading stage, it was examined to understand the change of plant hormones and starch during grain filling and ripening. Exogenous gibberellin caused a dramatic decrease in endogenous ABA content. Endogenous $GA_{4}$ content in both superior and inferior part was more promoted in $GA_{4}-treated$ rice grain than in the control. $GA_{1}$ content of an inferior part was not detected in the control and $GA_{4}-treated$ rice otherwise $GA_{4}$ was detected in all grain parts. Ripened grain rate in $GA_{4}-treated$ rice grain was lower than that of the control plant. Amylopectin from $GA_{4}-treated$ grain contained more very short chains with degree of polymerization (DP) between 4 and 8 than amylopectin from the control plant. It suggests strongly that fine structure of rice endosperm may be changed by exogenously applied $GA_{4}$ in rice plants.

산화물 고체전해질의 입계전도 (Grain-Boundary Conduction in Solid Oxide Electrolyte)

  • 이종흔
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.683-689
    • /
    • 2007
  • Grain-boundary conduction in the fluorite-structure solid oxide electrolytes such as acceptor-doped zirconia and ceria were reviewed. The siliceous impurity, even several hundreds ppm, affects the ionic conduction across grain boundary to a great extent. Various approaches to improve grain-boundary conduction in fluorite-structure oxide electrolytes have been investigated, which include (1) the scavenging of siliceous phase by the reaction with second phase, (2) the gathering of intergranular siliceous phase into a discrete configuration and (3) the dewetting of intergranular liquid phase by post-sintering heat treatment.

이중 결정립 구조 1%Si-Al 금속선에 의한 Migration 수명의 개선 (Improvement of Migration Lifetime by Dual-sized Grain Structure in 1% Si-Al Metal Line)

  • 김영철;김철주
    • 전자공학회논문지A
    • /
    • 제30A권6호
    • /
    • pp.1-7
    • /
    • 1993
  • After the 1%S-Al metal is deposited, a thin oxide is formed thereon. Then, a single charged Argon(Ar$^{+}$) is ion implanted into the oxide layer, thereby causing the metal grain in the upper surface of the metal layer to become amorphous. Consequently, the grain size will be reduced and the rough surface of the metal layer flattened. However, the remainder of the metal layer beneath the upper surface thereof will still exhibit large grain size and low resistance, because the Argon ion is only implanted to characterized by a dual-sized grain structure which served to reduce interlayer stress, thereby decreasing the rate of stress migration, and to lower the resistivity of the metal line, thereby enhancing the electromigration characteristic thereof. Experiments have shown that the metal line exhibits a metal migration rate which is approximately 700% less than the control group and a standard deviation which is approximately 200% less than these group.p.

  • PDF

Effect of Interface Structures on Densification and Grain Growth during Sintering

  • Hwang, Nong-Moon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.62-63
    • /
    • 2006
  • Both densification and grain growth are driven by the reduction of the interfacial area, kinetics of which depends strongly on the interface structure. Abnormal grain coarsening in the system of singular solid/liquid interface such as WC-Co alloys was explained by the growth mechanism of 2-dimensional nucleation. Based on this concept, the marked inhibition of coarsening of WC grains by VC addition can be approached by the increase in the step free energy, which increases the barrier of 2-dimensional nucleation. The activated sintering in tungsten powders can be approached by the interface structure change induced by the addition of a small amount of nickel.

  • PDF

입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발 (Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element)

  • 구태완;김동진;강범수
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

Effects of Nitrogen Level and Seedling Number on Panicle Structure in Japonica Rice

  • Kim, Bo-Kyeong;Kim, Ki-Young;Oh, Myung-Kyu;Shin, Mun-Sik;Ko, Jae-Kwon;Lee, Jae-Kil;Kang, Hee-Kyoung
    • 한국작물학회지
    • /
    • 제48권2호
    • /
    • pp.120-126
    • /
    • 2003
  • Four different rice varieties, Sindongjinbyeo, Dongjin #1, Saegyehwabyeo, and Iksan 467, were transplanted under three different nitrogen levels and two different seedling numbers per hill to obtain basic information on panicle traits under different cultural conditions and to propose the ideal panicle structure in Japonica rice. Sindongjinbyeo and Iksan 467 were characterized by more primary rachis branches (PRBs) per panicle and more grains on PRB than other cultivars. The two varieties also had fewer secondary rachis branches (SRBs) per PRB and fewer grains on SRB per PRB. These characteristics, consequently, resulted in higher ripened grain rate, contrary to that of Dongjin #1 and Saegyehwabyeo. In the correlation coefficient analysis, PRB number per panicle and grain number on PRB per panicle were positively correlated with ripened grain rate, while SRB number per panicle, number of grains on SRB per panicle, SRB number per PRB, number of grains on SRB per PRB and grain number per panicle were negatively correlated with ripened grain rate. Therefore, the number of grains on PRB per panicle, SRB number per PRB and the number of grains on SRB per PRB were the appropriate criteria for determining and achieving higher ripened grain rate in rice. High ripened grain rate over 90% was obtainable with over 12.5 PRBs per panicle and 63 grains on PRB per panicle, and with under 1.7 SRBs per PRB, 5 grains on SRB per PRB, 130 grains per panicle, and 14 panicles per hill. The study recommended that for over 90% high ripened grain rate, the critical limiting factors should be under 2 SRBs per PRB, 6 grains per PRB, and 130 grains per panicle, irrespective of the PRB number per panicle and the number of grains on PRB.