• Title/Summary/Keyword: Grain sizes

Search Result 446, Processing Time 0.028 seconds

Microstructural and Mechanical Properties of Ta-bearing 9%Cr Ferritic/Martensitic Steels (탄탈륨 함유 9%Cr 페라이트/마르텐사이트 강의 미세조직 및 기계적 특성)

  • Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Hahn, Dohee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.209-216
    • /
    • 2009
  • It was evaluated that the microstructural and mechanical properties of Ta-bearing 9Cr-0.5Mo-2W ferritic/martensitic experimental steels. All the experimental steels showed the tempered martensitic microstructures, and $M_{23}C_6$ carbides, whose sizes were ranged from 200 to 300 nm, were easily observed at both boundaries of the prior austenite grain and the martensite lath. In addition, a relatively large Nb-rich MX carbonitrides were intermittently detected at the prior austenite grain boundaries, whereas a lot of Vrich MX carbonitrides, whose mean diameter was less than 50 nm, were observed randomly at both boundaries. Ta was mainly incorporated into the V-rich MX carbonitrides rather than the Nb-rich ones and their content was spanned from 5 to 20 at.%. Ta contents within the MX precipitates also increased as the content of Ta increased. Because the Ta addition into the steels would be attributed to the precipitation strengthening, solid solution strengthening and lath width reduction, it was shown that the mechanical properties, including hardness, tensile strength and creep rate of the 9%Cr-0.5Mo-2W steels were improved by the increase of Ta content. Especially, 9Cr-0.5Mo-2W-0.3V-0.05Nb-0.14Ta steel was revealed to be relatively excellent in the application for the SFR fuel cladding.

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가)

  • Kim, Ju-Hun;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Evaluation of Withdrawal Resistance of Screw-Type Fasteners Depending on Lead-Hole Size, Grain Direction, Screw Size, Screw Type and Species

  • LEE, Hyung Woo;JANG, Sang Sik;KANG, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.181-190
    • /
    • 2021
  • Screw-type fasteners are widely used to make connections between wood members or between wood and steel connectors because they can tolerate the applied loads by withdrawal or shearing. In this study, we evaluated the withdrawal resistances of the screw-type fasteners and analyzed the effects of the lead-hole size, relative grain direction (tangential, radial, and cross-sections) of the wood member, screw diameter, screw type, and species. Two wood species, including domestic larch and imported spruce, and three screw-type fasteners, including domestic lag screws (diameters of 9.46, 7.79, and 6.27 mm), domestic tapping screw (diameter, 6.3 mm), and imported Sherpa screw (diameter, 8.0 mm) were used. To assess the effect of lead-hole size, the lead holes with diameters corresponding to 68.7%, 70.8%, and 74.0% of the shank diameter of the lag screw were predrilled. The lead hole corresponding to 74% of the shank diameter was selected for this study because the smaller lead holes required higher rotational force for installation, which may cause damage in the screw neck, although there was no significant difference in the withdrawal resistance depending on the lead-hole sizes applied in this study. The lag screws installed on the tangential and radial surfaces showed similar withdrawal resistances to each other, which were greater than those installed on the cross-sectional surface. As the lag screw diameter increased from 6.27 mm to 9.46 mm, the withdrawal resistance also increased proportionally. The withdrawal resistance of the tapping screw having a diameter of 6.3 mm was almost 1.6 times higher than that of the lag screw having a similar diameter of 6.27 mm, while that of Sherpa screw having a diameter of 8.0 mm was around 1.4 times higher than that of the lag screw having a similar diameter of 7.79 mm.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River (동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

Modulation of Microstructure and Energy Storage Performance in (K,Na)NbO3-Bi(Ni,Ta)O3 Ceramics through Zn Doping (Zn 도핑을 통한 (K,Na)NbO3-Bi(Ni,Ta)O3 세라믹의 미세구조 및 에너지 저장 물성 제어)

  • Jueun Kim;Seonhwa Park;Yuho Min
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.509-515
    • /
    • 2023
  • Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3)O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNN-BNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNN-based ceramic capacitors with enhanced energy storage capabilities through doping strategies.

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

$\beta$-glucan Contents and Their Characteristics of Winter Cereals According to Particle Sizes and Milling Recoveries

  • Kim, Sun-Lim;Park, Chul-Ho;Yu, Chang-Yeon;Hwang, Jong-Jin
    • Plant Resources
    • /
    • v.4 no.3
    • /
    • pp.140-146
    • /
    • 2001
  • This study was conducted to investigate the $\beta$-glucan contents and their characteristics of winter cereals according to particle sizes and milling recoveries. Sieved fractions differed in their average contents of $\beta$-glucans, and the coarse fraction had higher contents of $\beta$-glucan than finely milled fractions. In all winter cereals, the $\beta$-glucan contents of raw flours were higher than those of their brans, and the highest $\beta$-glucan contents of every cereals were observed at 100 mesh > or 100-140 mesh fractions except the Chalssalbori fractions which showed the higest $\beta$-glucan contents (12.9%) at 140-200 mesh fraction. As compared with the $\beta$-glucan content of Chalbori among the various milling recoveries, the $\beta$-glucan was distributed more evenly throughout the endosperm but $\beta$-glucan content in bran of Chalbori was only 1.5%. However, $\beta$-glucan content of Chalssalbori (hull-less waxy barley) was the highest in the subaleurone region (8.2%) and declined slightly toward inner layers of grain. This results suggest that $\beta$-glucan distribution between high (Chalbori) and low $\beta$-glucan barley (Chalssalbori) may explain the difference in milling performance of barley. On the other hand, $\beta$-glucan contents of two rye varieties (Chilbohomil, Chunchoohomil) were lower than those of two waxy barley varieties, and the higest $\beta$-glucan contents were observed at the 60% milling recoveries. In all winter cereals, the L-values (lightness) of raw flours were higher than those of brans. And the L-values of barley varieties were higher than those of oat and rye varieties. As the particle sizes and milling recovery ratios were decreased, the L-value were increased. The a-values (redness) in brans of every winter cereals were higher than those of every particle size flours and every milling ratio fractions, and this tendency was observed in the b-values (yellowness) of every particle size of cereal flours. The L and b-value of barley, the b-value of oat, and L, a, b-value of rye have the significant relationship with the $\beta$-glucan contents, respectively. This results represent the fact that $\beta$-glucans affected the color of the flours and pounded grains of winter cereals.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

The Sound Velocity and Attenuation Coefficient of the Marine Surface Seciments in the nearshore area, Korea (韓半島 沿近海底 表層堆積物에서의 音波傳達速度와 減衰係數)

  • 김성;석봉출
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 1985
  • The sound velocity (compressional wave) and attenuation coefficient in the marine surface sediments in the nearshore areas off the Pohang, Pusan, Yeosu and Kunsan were investigated in terms of the geotechnical properties of the marine surface sediments in the water depth range of 10-50 meters. The marine surface sediments in the study areas are variable, that is, sand to clay. Due to the various four different study area, the sound velocities and attenuation coefficients in the surface sediment facies vary 1,44m/sec to 1,510m/sec in velocity and 0.82dB/m to 3.70dB/m in coefficient respectively. In fact, the sound velocity increases with increasing of density and mean grain sizes of the sediments, and however, with decreasing of porosith. The correlation equations between the sound velocith and geotechnical properties of mean grain size, density, and porosity were expressed as the following: Vp=1512.28406-9.16083(Mz)+0.20795(Mz)$\^$2/, Vp=1876.15527-597.50397(d)+210.48375(d)$\^$2/, Vp=1559.47217-2.09266(n)$\^$2/. where Vp is sound velocity, Mz is mean grain size, d is density, and m is porosity, respectively. However, the relationship between the attenuation and geotechnical properties were different from that of sound velocity and geotchnical properties. Furthermore, the correlation equations between attenuation coefficient and geotechnical properties were expressed as the following: a=1.85217+0.67197(Mz)-0.09035 (Mz)$\^$2/, a=48.87859+58.21721(d)-16.3.143(d)$\^$2/, a=2.06765+0.07215(n)-0.00111(n)$\^$2/, where a is attenuation coefficient. The high attenuation appeared in the silty sand through fine sand facies in sediment and k values in these facies were in the range of 0.86 to 0.89 dB/m/KHz.