• Title/Summary/Keyword: Grain growth mechanism

Search Result 124, Processing Time 0.023 seconds

A Study on the Recrystallization Behavior of Zr-xSn Binary Alloys (Zr-xSn 이원계 합금의 재결정에 관한 연구)

  • Lee, Myeong-Ho;Gu, Jae-Song;Jeong, Yong-Hwan;Jeong, Yeon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1123-1128
    • /
    • 1999
  • To investigate the effect of Sn on the recrystallization of Zr-based alloys. Zr-xSn (x=0.5, 0.8, 1.5, 2.0wt.%) alloys were manufactured to be the sheets through the defined manufacturing procedure. The specimens were annealed at $300^{\circ}C$ to $800^{\circ}C$ for 1 hour. The hardness, microstructure and precipitate of the alloys with the annealing temperature were investigated by using micro- knoop hardness tester, optical microscope(O/M) and transmission electron microscope(TEM), respectively. The cold-worked Zr-xSn alloys showed the typical behavior of the recovery. recrystallization, and grain growth. The recrystallization of Zr-xSn alloys occurred between $500^{\circ}C$ and $700^{\circ}C$. As the Sn content increased. the recrystallization temperature of the cold-worked alloys increased but their grain sizes after recrystallization decreased. It is suggested that the recrystallization of the cold- worked Zr alloys be occurred by the subgrain coalescence and growth mechanism.

  • PDF

Effect of Hot Interrupted strain on Static Softening of Single Phase Cu-Zn Alloy (고온단속변형량이 단상 Cu-Zn합금의 정적연화에 미치는 영향)

  • 권용환;조상현;유연철
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.169-179
    • /
    • 1995
  • Static restoration mechanism during hot interrupted deformation of Cu-Zn alloy was studied in the temperature range from $550^{\circ}C$ to $750^{\circ}C$ and at a constant strain rate of 0.1/sec. At a given temperature, the hot interrupted deformations were performed with variation of interrupted time $t_i$ form 1 to 50 sec and of interrupted strain ${\varepsilon}_i$ from 0.15 to 0.90. From the analysis of the values of the critical strain of ${\varepsilon}_c$ for tje initiation of dynamic recrystallization and the peak strain of${\varepsilon}_p$, the relationship ${\varepsilon}_c{\fallingdotseq}0.7{\varepsilon}_p$ was obtained. It was clarified that the softening of the interrupted deformation was mainly the static recrystallization and the fractional softening(FS) which was over 30% mostly confirmed this result. The fractional softening of the interrupted time $t_i$ especially and pre-strain. The FS increased with increasing strain rate, interrupted time and pre-strain. The change of microstructures after hot deformation could be predicted by the FS. when the FS was 30~100%, static recrystallization was happened and grain growth was observed at the condition which was $750^{\circ}C$ deformation temperature, 0.45 prestrain and this condition's FS value was over 100%.

  • PDF

Fatigue Frequency Effect of High Temperature Fatigue Fracture Behavior of $Al_2O_3$-33Vol.% $SiC_w$ ($Al_2O_3$-33Vol.% $SiC_w$의 고온피로에 미치는 피로하중주파수의 영향)

  • 김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.785-792
    • /
    • 1991
  • An investigation of the crack propagation behavior of Al2O3-33Vol.% SiCw at 140$0^{\circ}C$ was conducted with various loading frequencies. Higher crack propagation was observed in lower frequency and higher load ratios. Interface sliding fracture due to glassy phase from the oxidation of SiCw and cavitation along grain boundary of diffusional creep appeared to be the main mechanism of fatigue fracture in slower crack propagation while interface sliding and whisker pull out aided by glassy phase formation played main role of fatigue fracture for higher crack growth condition. The frequency effect on deformation behavior was discussed with a Maxwell model.

  • PDF

Coarsening Mechanism in Cemented Carbides and Suggestion for Suppression of Grain Growth (Cemented Carbides에서의 입성장 기구와 입성장 억제를 위한 제안)

  • Choi, K.;Choi, U.S.;Hwang, N.M.;Kim, D.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.04a
    • /
    • pp.14-14
    • /
    • 2001
  • WC-Co 계의 입성장 억제는 현재 초경합금 분야에서 공학적으로 가장 중요한 이슈들 중의 하나이다 VC를 비롯한 입방정 탄화물이나 $Cr_3C_2$ 등의 여러 가지 탄화 물이 혼합되어 입성장 억제에 이용되는데 입성장 억제의 효과는 대략적으로 용해되는 탄화물의 양에 의존하고 있는 것으로 추정된다. 보다 효율적으로 입성장 억제를 실현하려면 입성장 기구를 명확히 할 필요가 있다. 최 등[1]은 VC가 WC 입자 표면 에서의 edge energy를 증가시켜서 2차원 핵생성의 에너지 장벽을 올리게 하고 이에 따라 입성장이 억제된다는 모델을 제안하였다. 이러한 모텔을 입증하기 위해서는 이론적으로만 예측이 가능한 edge energy보다 좀 더 명확한 물리적인 변수가 제시되어야 할 것이다. 여기서는 또 다른 계인 NbC- TiC-Co 계에서 NbC와 TiC의 버에 따른 입성장 거동과 입자의 형상간의 관계로부터 업성장과 edge energy 그리 고 edge energy와 입자 형상간의 관계를 알아보고 이로부터 좀 더 구체적인 의미 에서의 입성장 모텔과 입성장 억제기구를 제시하고자 한다.

  • PDF

Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties (La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향)

  • 강석원;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF

A Study on the Sintering Behavior of Nanostructured W-30 wt%Cu Composite Powder by Dilatometry (Dilatometric 분석에 의한 나노구조 W-30 wt%Cu 복합분말의 소결거동연구)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • In order to clarify the enhanced sintering behavior of nanostructured(NS) W-Cu powder prepared by mechaincal alloying, the sintering behavior during heating stage was analysed by a dilatometry with various heating rates. The sintering of NS W-Cu powders was characterized by the densification of two stages, having two peaks in shrinkage rate curves. The temperature at which the first peak appear was much lower than Cu melting point, and dependent on heating rate. On the basis of the shrinkage rate curves and the microstructural observation, the coupling effect of nanocrystalline W-grain growth and the liquid-like behavior of Cu phase was suggested as a possible mechanism for the enhanced sintering of NS W-Cu powder in the state.

  • PDF

Oxidation Process of Epitaxial Ni(111) Thin Films Deposited on GaN/Sapphire(0001) Substrates (GaN/Sapphire(0001) 기판위에 증착한 epitaxial Ni(111) 박막의 산화 과정)

  • Seo, S.H.;Kang, Hyon-Chol
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.354-360
    • /
    • 2009
  • This paper reports the oxidation mechanism of epitaxial Ni thin films grown on GaN/sapphire(0001) substrates, investigated by real-time x-ray diffraction and scanning electron microscopy. At the initial stage of oxidation process, a thin NiO layer with a thickness of ${\sim}50\;{\AA}$ was formed on top of the Ni films. The growth of such NiO layer was saturated and then served as a passive oxide layer for the further oxidation process. For the second oxidation stage, host Ni atoms diffused out to the surfaces of initially formed NiO layer through the defects running vertically to form NiO grains, while the sites that were occupied by host Ni, became voids. The crystallographic properties of resultant NiO films, such as grain size and mosaic distribution, rely highly on the oxidation temperatures.

Characterization of microcrystalline silicon thin films prepared by layer-by-layer technique with a OECVD system

  • Kim, C.O.;Nahm, T.U.;Hong, J.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.116-120
    • /
    • 1999
  • Possible role of hydrogen atoms on the formation of microcrystalline silicon films was schematically investigated using a plasma enhanced chemical vapor deposition system. A layer-by-layer technique that can alternate deposition of ${\alpha}$-Si thin film and then exposure of H2 plasma was used for this end. The experimental process was extensively carried out under different hydrogen plasma times (t2) at a fixed number of 20 cycles in the deposition. structural properties, such as crystalline volume fractions and grain shapes were analyzed by using a Raman spectroscopy and a scanning electron microscopy. Electrical transports were characterized by the temperature dependence of the dark conductivity that gives rise to the calculation of activation energy (Ea). Optical absorption was measured using an ultra violet spectrophotometer, resulting in the optical energy gap (Eopt). Our experimental results indicate that both of the hydrogen etching and the structural relaxation effects on the film surface seem to be responsible for the growth mechanism of the crystallites in the ${\mu}$c-si films.

  • PDF

Analysis of Global Food Market and Food-Energy Price Links: Based on System Dynamics Approach

  • Kim, Gyu-Rim
    • Korean System Dynamics Review
    • /
    • v.10 no.3
    • /
    • pp.105-124
    • /
    • 2009
  • The situation of the global food markets has been being rapidly restructured and entering on a new phase by new dynamic and driving forces. The factors such as economic growth and income increase, high energy price, globalization, urbanization, and global climate change are transforming patterns of food consumption, production, and markets. The prices and markets of world food and energy are getting increasingly linked each other. Food and fuel are the global dilemma issues associated with the risk of diverting farmland or of consuming cereals for biofuel production in detriment of the cereals supply to the global food markets. An estimated 100 million tons of grain per year are being redirected from food to fuel. Therefore, the objectives of this study are as follows: Firstly, the study examines situations of the world food and energy resources, analyzes the trends of prices of the crude oil and biofuel, and formulates the food-energy links mechanism. Secondly, the study builds a simulation model, based on system dynamics approach, for not only analyzing the global cereals market and energy market but also forecasting the global production, consumption, and stock of those markets by 2030 in the future. The model of this study consists of four sectors, i.e., world population dynamics sector, global food market dynamics sector, global energy market dynamics sector, scenario sector of world economic growth and oil price.

  • PDF

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF