• Title/Summary/Keyword: Grain growth mechanism

Search Result 124, Processing Time 0.024 seconds

Sintering Behavior of M-type Sr-Hexaferrite by MnCO3 Addition (M-type Sr-Hexaferrite에서 MnCO3 첨가에 따른 소결 거동)

  • Jeong, MinSeok;You, Changjae;Cho, Jung Young;Moon, Kyoung-Seok
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2020
  • The grain growth behavior of M-type Sr hexaferrite (SrM) grains is investigated with the addition of MnCO3. First, the SrM powder is synthesized by a conventional solid-state reaction. The powder compacts of SrM are sintered at 1250℃ for 2 h with various amounts of MnCO3 (0, 0.5, 1.0, and 4.0 mol%). There is no secondary solid phase in any of the sintered samples. Relative density increases when MnCO3 is added to the SrM. Obvious abnormal grain growth does not appear in any of the SrM samples with MnCO3. The average grain size increases when 0.5 mol% MnCO3 is added to the SrM. However, as the amount of MnCO3 increase to over 0.5 mol%, the average grain size decreases. These observations allow us to conclude that the growth of SrM grains is governed by the two-dimensional nucleation grain growth mechanism, and the critical driving force for the growth of a grain decreases as the amount of MnCO3 increases.

A Study on the CdTe Single Crystal Growth by Vertical Bridgman Method (수직 Bridgman 법에 의한 CdTe 단결정 성장에 관한 연구)

  • Lee, Jong-Ki;Kim, Wook;Baik, Hong-Koo
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.324-331
    • /
    • 1990
  • The single crystal of CdTe was grown by modified 6 zone Bridgman method under the conditions of excess Te and excess Cd. To prevent the constitutional supercooling, the crystal growth was done under the temperature gradient of $17^{\circ}C/cm$ in front of the solid /liquid interface and the growth rate was 3mm/hr. The grain morphologies and the growth mechanism were investigated in excess Te and excess Cd conditions. The grain size of excess Te crystal was increased with an increase of the distance from the tip but, in the case of excess Cd crystal, single crystal was not obtained because of the cavities due to the excess Cd vapors so that the grain size was not increased with an increase of the distance from the tip. In addition, the growth of single crystal of CdTe was done with repeated necking ampoule. It was found that the necking had no effects on the grain selection because the cavities trapped in the necking portion acted as heterogeneous nucleation sites.

  • PDF

Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture (실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성)

  • Kim, Jong-Chan;Lee, Eun Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

Various Master Sintering Curve Concepts and its Applications

  • Park, Seong-Jin;Blaine, Deborah C.;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.66-67
    • /
    • 2006
  • The master sintering curve (MSC) is derived from densification data over a range of heating rates and temperatures. To improve the accuracy, several modifications were proposed: multi-phase MSC for solid state sintering with phase changes, MSC for liquid phase sintering, and MSC with consideration of grain growth. The developed MSC models were applied to several material systems such as molybdenum, stainless steels, and tungsten heavy alloys (WHA), in order to evaluate the effect of compaction pressure, phase change, grain growth, and composition on densification, to classify regions having different sintering mechanism, and to help engineer design, optimize, and monitor sintering cycles.

  • PDF

Fatigue Crack Retardation and Retardation Mechanism in Variable Loading (The Effects of Crack Tip Branching in Crack Growth Retardation)

  • Song, Sam-Hong;Kwon, Yun-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.76-81
    • /
    • 2002
  • In order to study the fatigue crack and retardation mechanism in variable loading, the effects of crack tip branching in crack growth retardation were examined. The characteristics of crack tip branching behavior were considered with respect to microstructure and crack tip branching angle was examined. Crack tip branching was observed along the grain boundary of finite and pearlite structure. It was found that the branching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving farce to branching angle was examined. The effective crack driving farce (K$\_$eff/) decreased as the branching angle increased. The rate of decrease was 33% for kinked type and 29% for forked one. It was confirmed that the effect of crack tip branching is a very important factor in crack growth retardation. Therefore, crack branching effect should be considered in building the hypothetical model to predict crack growth retardation.

Fatigue Crack Growth Behavior of Non-Magnetic Steel with Large Grain Size (조대결정 비자성강의 피로균열진전특성)

  • 남정학;최성대;이종형;정선환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.807-810
    • /
    • 2001
  • Fatigue crack growth tests were carried out using high manganese cast steel under constant amplitude loading. Crystal grain size of the material is about 1000$\mu\textrm{m}$. For this material, the fatigue crack growth mechanism of high manganese steel was clarified from results such as observation of crack growth path and fracture surface. $\Delta$$K_{th}$ is about 8MPa$\surd$m which is quiet large as compared to the general structural steels and the crack growth rate is lower than the general structural steels especilly in the low $\Delta$K regsion. The reason of this behavior is crack closure due to fracture surface roughness.

  • PDF

A STUDY OF MAGNETIC ALIGNMENT OF DIE-UPSET Pr-Fe-B-Cu MAGNETS

  • Kwon, H.W.;Ma, T.J.;Harris, I.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.416-420
    • /
    • 1995
  • An attempt has been made to investigate the mechanism of magnetic alignment in the magnets produced by upset forging the $Pr_{20}Fe_{74}B_{4}Cu_{2}$ cast bulk alloy. Upset forging of the cast alloy was carried out for 20 sec to an 80 % thickness reduction (strain rate : $4{$\times}10^{-2}s^{-1}$) in an open die configuration at varying temperatures in the range $600^{\circ}-900^{\circ}C$. It has been found that the upset forging process at temperatures above $800^{\circ}C$ can achieve a magnetic alignment to a great extent from copper-containing Pr-Fe- B-type cast ingot. The growth manner of the ferromagnetic $Pr_{2}Fe_{14}B$ matrix grain in Pr-Fe-B-type alloys was studied by examining the morphology change of the matrix grain in sintered body, and it was found that the matrix grains grew in anisotropic manner such that the grain grew more rapidly along the a- or b-axis than along the c-axis. This anisotropic grain growth led to the plate-like shape of the matrix grain. The magnetic alignment during the upset forging was attributed to grain boundary gliding of the plate-like grains, and the geometry of the grains in the cast ingot and the presence of a large amount of the praseodymium-rich grain boundary phase were thought to play a key role in the achievement of magnetic alignment.

  • PDF

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I))

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)