• Title/Summary/Keyword: Grain boundary layer

Search Result 154, Processing Time 0.03 seconds

Electrical Properties of ZnO-Bi2O3-Sb2O3 Ceramics (ZnO-Bi2O3-Sb2O3 세라믹스의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.738-748
    • /
    • 2008
  • In this study, it has been investigated on the changing behavior of electrical properties in $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0 and 0.5) ceramics. The samples were prepared by conventional ceramic process, and then characterized by I-V, C-V curve plots, impedance and modulus spectroscopy (IS & MS) measurement. The electrical properties of ZBS systems were strongly dependent on Sb/Bi. In ZBS systems, the varistor characteristics were deteriorated noticeably with increasing Sb/Bi and the donor density and interface state density were increased with increasing Sb/Bi. On the other hand, we observed that the grain boundary reacted actively with the ambient oxygen according to Sb/Bi ratio. Especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature. Besides, the increased pyrochlore and $\beta$-spinel phase with Sb/Bi ratio caused the distributional inhomogeneity in the grain boundary barrier height and the temperature instability. To the contrary, the grain boundary layer was relatively homogeneous and more stable to temperature change and kept the system highly nonlinear at high Bi-rich phase contents.

Effect of Starting Material for MgG on the Mechanical Properties of Alumina Ceramics (알루미나 세라믹스의 기계적 특성에 미치는 MgO출발물질의 영향)

  • 조용익;정상귀;조성용;김승재
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • The effect of kind of starting materials used for a sintering additive. magnesium acetate and magnesium nitrate, on the mechanical properties of alumina sintered body made by adding 1000 ppm of the additives, respectively, was investigated. As for the alumina sintered bodies prepared from magnesium acetate and magnesium nitrate, we observed that their relative densities decreased rapidly with increasing sintering temperature 1$600^{\circ}C$. Outer layer of alumina bodies had a duplex microstructure consisting of pores and grain growth. Also the inner layer had a second phase between alumina grain boundaries. By EPMA analysis, we confirmed that the grain boundary phase was a compound containing Mg.

Degradation Properties of ZnO Surge Arresters Due to Lightning Impulse Currents (뇌임펄스전류에 의한 ZnO 피뢰기의 열화특성)

  • Lee, Su-Bong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • This paper describes the degradation properties of ZnO surge arresters impressed by lightning impulse currents. To investigate the deterioration behaviors of ZnO surge arresters due to lightning surges, the 8/20[${\mu}s$], 2.5[kA] standard lightning impulse currents were injected to the ZnO surge arrester under test. The power frequency AC and DC leakage currents flowing through the ZnO surge arresters with and without the injection of lightning impulse currents were measured. As a result, the leakage currents are increased and the asymmetry of the AC leakage current is pronounced as the number of injection of the impulse current increases. The ZnO grain of the surge arrester without the injection of lightning surges are uniform but the ZnO grain of the ZnO surge arrester with the injection of lightning impulse currents are deformed. Also, it was found that the decrease of the $Bi_2O_3$ due to the lightning impulse current leads to the lack of grain boundary layer and the current concentrated by the lack of grain boundary layer play an important role to degrade nonlinear property of ZnO surge arrester blocks.

Effects of Carburizing Process on Sliding wear Behavior of Carburized SCM420H Steel (침탄처리한 SCM420H의 미끄럼 마모 특성에 미치는 침탄 조건의 영향)

  • Lee, Han-Young;Lee, Kyu-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • The effects of the carburizing process on the sliding wear behavior of SCM420H steel have been investigated. In particular, the effects of grain boundary corrosion observed in the surface layer after gas carburizing and the effects of hardness of the carburized cases after heat-treatment on the sliding wear properties were examined. Pin specimens carburized by two methods (gas carburizing and vacuum carburizing) were tempered at two temperatures of 180℃ and 400℃ after oil-quenching, respectively. Sliding wear tests were carried out against heattreated SKH51 steel at several sliding speeds using a pin-on-disc type test machine. As results, it can be found that there is no difference in the wear behavior between the pins carburized using two methods. This implies that the grain boundary corrosion that formed in the surface layer after gas carburizing has no effect on the sliding wear behavior of carburized SCM420H steels. Additionally, there is no significant difference in the wear behavior between carburized pins tempered at 400℃ and at 180℃ after oil-quenching, regardless of the carburizing method. This is because carburized pins tempered at 400℃ have a troostite structure, which exhibits higher tribochemical reactivity even though its hardness is lower than that of martensite structure. In this respect, it can be considered that good wear resistance of carburized cases is maintained at least until the effective case depth.

A study on the dielectric and electrical conduction properties of$(Sr_{1-x}.Ca_x)TiO_3$ grain boundary layer ceramics ($(Sr_{1-x}.Ca_x)TiO_3$입계층 세라믹의 유전 및 전기전도특성에 관한 연구)

  • 최운식;김충혁;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.611-618
    • /
    • 1995
  • The (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$+0.6[mol%]Nb$_{2}$O$_{5}$ (0.05.leq.x.leq.0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[.deg. C] in a reducing atmosphere(N$_{2}$ gas). Metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100 [.deg. C] for 2 hours. The 2nd phase formed by thermal diffusing from the surface lead to a very high apparent dielectric constant. According to increase of the frequency as a functional of temperature, all specimens used in this study showed the dielectric relaxation, and the relaxation frequency was above 106 [Hz], it move to low frequency with increasing resistivity of grain. The specimens showed three kinds of conduction mechanisms in the temperature range 25-125 [.deg. C] as the current increased: the region I below 200 [V/cm] shows the ohmic conduction. The region rt between 200 [V/cm] and 2000 [V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000 [V/cm] is dominated by the tunneling effect.fect.

  • PDF

The Effect of Grain Boundary Diffusion on the Boundary Structure and Electrical Characteristics of Semiconductive $SrTiO_3$ Ceramics (입계확산에 의한 반도성 $SrTiO_3$ 세라믹스의 입계구조 및 전기적 특성 변화)

  • 김태균;조남희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Semiconductive SrTiO3 ceramic bodies were prepared by conventional ceramic powder processes in-cluding sintering in a reducing atmosphere. Sodium or potassium ions were diffused from the surface of the sintered bodies into the inner region using thermal diffusion process at 800-120$0^{\circ}C$. The effects of such ther-mal treatments on the electrical and chemical characteristics of the grain boundaries were investigated. The presence of sodium or potassium ions at grain boundaries produces non-linear current-voltage behaviors, electrical boundary potential barriers of 0.1-0.2eV, and threshold voltages of 10-70V. The diffused ions form diffusion layers with thicknesses of 20-50nm near the grain boundaries, reducing the concentration of strontium and oxygen.

  • PDF

Corrosive Degradation of MgO/Al2O3-Added Si3N4 Ceramics under a Hydrothermal Condition (MgO/Al2O3가 소결조제로 첨가된 Si3N4 세라믹스의 수열 조건에서의 부식열화 거동)

  • Kim, Weon-Ju;Kang, Seok-Min;Park, Ji-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.366-370
    • /
    • 2007
  • Silicon nitride ($Si_3N_4$) ceramics have been considered for various components of nuclear power plants such as the mechanical seal of a reactor coolant pump (RCP), the guide roller for a control rod drive mechanism (CRDM), and a seal support, etc. Corrosion behavior of $Si_3N_4$ ceramics in a high-temperature and high-pressure water must be elucidated before they can be considered as components for nuclear power plants. In this study, the corrosion behaviors of $Si_3N_4$ ceramics containing MgO and $Al_2O_3$ as sintering aids were investigated at a hydrothermal condition ($300^{\circ}C$, 9.0 MPa) in pure water and 35 ppm LiOH solution. The corrosion reactions were controlled by a diffusion of the reactive species and/or products through the corroded layer. The grain-boundary phase was preferentially corroded in pure water whereas the $Si_3N_4$ grain seemed to be corroded at a similar rate to the grain-boundary phase in LiOH solution. Flexural strengths of the $Si_3N_4$ ceramics were significantly degraded due to the corrosion reaction. Results of this study imply that a variation of the sintering aids and/or a control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of $Si_3N_4$ ceramics in a high-temperature water.

A Study on the Effect of Fluid Flow on the Microstructure of High Purity Al Ingot under Forced Flow (강제대류시 고순도 Al괴의 응고조직에 미치는 유동의 영향)

  • Kim, Kyoung-Min;Kim, Heon-Joo;Ha, Ki-Yun;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.13 no.6
    • /
    • pp.540-546
    • /
    • 1993
  • The effects of fluid flow on the purification of aluminum were studied. As the revolution rate(N) increased, the size of columnar grain decreased gradually. The concentration of solidified crystal was decreased with increasing distance from chill and revolution rate(N). Distribution boundary layer thickness(${\delta}$) was calculated from the solute distribution obtained in solid experimentally and by use of BPS equation. The value of ${\delta}$ changed from about $60{\mu}m$ at N value of 27rpm to about $15{\mu}m$ at N value of 1000rpm. From this result, high purification was obtained by decreasing the diffusion boundary layer under forced convection.

  • PDF

Reaction diffusion and formation of$Ni_3Al$ phase at the Ni-NiAl diffusion couple (Ni-NiAl 확산대에서 $Ni_3Al$ 상의 형성과 반응확산)

  • 정승부
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.128-135
    • /
    • 1997
  • Reaction diffusion and formation of $Ni_3Al$phase with $L1_2$ structure have been studied in temperature range of 1432K to 1573K using the diffusion couple of (Ni-40, 5at%Al)/(Ni-14, 1at%Al) and (Ni-49, 2at%Al)/ (Nickel). The layer growth of Ni$_{3}$Al pyhase in the annealed diffusion couple was measured by optical microscope and electron probe microanalyzer (EPMA). The layer growth of $Ni_3Al$phase in diffusion zone obeyed the parabolic law without any indication of grain boundary effects. The layer growth of $Ni_3Al$phase in temperature range of 1423K to 1573K was mainly controlled by the volume diffusion mechanism. The rate of layer growth of $Ni_3Al$phase was found to be colsely related to the composition of intermetallic compound NiAl phase. The activation energy for layer growth of $Ni_3Al$phase was calculated to be 127kJ/mol.

  • PDF

Oxidation and Repeated-Bending Properties of Sn-Based Solder Joints After Highly Accelerated Stress Testing (HAST)

  • Kim, Jeonga;Park, Cheolho;Cho, Kyung-Mox;Hong, Wonsik;Bang, Jung-Hwan;Ko, Yong-Ho;Kang, Namhyun
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.678-688
    • /
    • 2018
  • The repeated-bending properties of Sn-0.7Cu, Sn-0.3Ag-0.7Cu (SAC0307), and Sn-3.0Ag-0.5Cu (SAC305) solders mounted on flexible substrates were studied using highly accelerated stress testing (HAST), followed by repeated-bending testing. In the Sn-0.7Cu joints, the $Cu_6Sn_5$ intermetallic compound (IMC) coarsened as the HAST time increased. For the SAC0307 and SAC305 joints, the $Ag_3Sn$ and $Cu_6Sn_5$ IMCs coarsened mainly along the grain boundary as the HAST time increased. The Sn-0.7Cu solder had a high contact angle, compared to the SAC0307 and SAC305 solders; consequently, the SAC0307 and SAC305 solder joints displayed smoother fillet shapes than the Sn-0.7Cu solder joint. The repeated-bending for the Sn-0.7Cu solder produced the crack initiated from the interface between the Cu lead wire and the solder, and that for the SAC solders indicated the cracks initiated at the surface, but away from the interface between the Cu lead wire and the solder. Furthermore, the oxide layer was thickest for Sn-0.7Cu and thinnest for SAC305, regardless of the HAST time. For the SAC solders, the crack initiation rate increased as the oxide layer thickened and roughened. $Cu_6Sn_5$ precipitated and grew along the grain and subgrain boundaries as the HAST time increased, embrittling the grain boundary at the crack propagation site.