• Title/Summary/Keyword: Grain boundary fracture

Search Result 123, Processing Time 0.024 seconds

Cr - Mo鋼 熔接 後熱處理材 의 勞破壞 에 關한 硏究

  • 박재규;김석원;김연식
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.16-26
    • /
    • 1985
  • Post weld heat treatment(PWHT), at more than 600.deg. C, is essential to remove residual stress and hydrogen in weld HAZ and improve fatigue characteristics. However, residual stress during PWHT is responsible for PWHT embitterment and it promotes precipitation of impurities to grain boundary. In this paper, the effect of stress simulated residual stress on fatigue failure was evaluated by fatigue test, microhardness test and fractograph. The obtained results are summarized as follows; (1) The fatigue crack growth rate(da/dN) of parent and heat treated parent was affected by microstructure due to heat treatment and it depended on stress intensity factor (.DELTA.k). (2) The fatigue strength of weld HAZ was dependent on applied stress during PWHT and da/dN after PWHT was slower than as-weld. (3) Softening amount of weld HAZ was bigger than any other due to PWHT. Hardness value of weld HAZ was affected by heat treatment under the applied stress of 10 $kgf/mm^2$, but beyond 20 $kgf/mm^2$ it was increased by the applied stress rather than heat treatment. (4) Beyond the applied stress of 20 $kgf/mm^2$ during PWHT, intergranular fracture surface was observed and its amount was increased with applied stress during PWHT. (5) Effect of applied stress during PWHT on aspect of fracture surface was larger rather than that on fatigue crack growth behavior.

  • PDF

Micro-Surface-Cracks Behavior of 304 Stainless Steel Under Creep-Fatigue Interaction at Elevated Temperature (고온하 304 스테인리스강의 크리프-피로상호작용하의 미소표면균열에 관한 파괴거동)

  • 서창민;이상돈;조일현
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1988
  • This paper deals with the micro-surface-cracks behavior on the unnotched smooth specimens of Type 304 stainless steel at $593^{\circ}C$ in air under creep and creep-fatigue conditions that have 10 mim and 1 min load holding times respectively. The behaviors of the micro-surface-cracks have been visualized by means of surface replica method and optical micro-photography. The quantitative characteristics of initiation, growth and coalescence of micro-surface-cracks have been investigated by observing and measuring the crack growth behaviors. some of the important results are as follows: Main crack initiates at grain boundary in the early stage(10 to 20%)of its life time and grows through coalescence and finally leads to fracture. The distribution of micro-surface-crack length, 2a, can be plotted against the composite Weibull distribution. The growth rate of the main crack can be plotted against the stress intensity factor, crack tip opering displacement and J integral.

  • PDF

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

Sintering and Machanical Properties of Y2O3 Added Al2O3-TiC Composite (Y2O3가 첨가된 Al2O3-TiC복합 소결체의 치밀화와 기계적 성질)

  • 최종선;박상엽;김득중;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.438-444
    • /
    • 1989
  • The role of TiC and the effect of Y2O3 addition on the densification, microstructure and mechanical properties of Al2O3-TiC composite have been studied. The amount of Y2O3 has been varied from 0 to 2 wt.% while keeping the TiC content at 10, 20 or 30 wt.%. The powder compacts have been sintered at 1,75$0^{\circ}C$ for various times in 1 atm Ar atmosphere and hot isostatically pressed (HIPed) at 1,$600^{\circ}C$ for 0.5h under 1,500atm Ar. Considerable increase in sintered density(over 95%) has been achieved by adding 0.5 wt.% Y2O3 in specimens containing high TiC volume. More addition of Y2O3 does not affect the densification. With increasing the sintering time from 0.5 to 4h, slight increase in density results. The growth of Al2O3 grain has been enhanced by Y2O3 addition ; this tendency is reduced with increasing TiC content because of grain boundary dragging effect of TiC particles. The hardness of specimens increases considerably by an addition of 0.5wt.% Y2O3 owing to the density increase. Further addition of Y2O3 has no effect on hardness. Fracture toughness augments with TiC content by crack deflection around the particles. By adding 0.5wt.% Y2O3, all the specimens can be densified to isolated pore stage and thus can be HIPed to full densification and better mechanical property. In particular, the fracture toughness of Al2O3-30 TiC specimen increases about 50% by HIPing. Fully dense Al2O3-30 TiC with good mechanical properties can be prepared by normal Sintering/HIPing process.

  • PDF

Mechanical properties of $Al_2O_3/Mo/MnO_2$ composite ($Al_2O_3/Mo/MnO_2$ 복합재료의 기계적 특성)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.172-179
    • /
    • 2006
  • When $Al_2O_3-MoO_3$ mixture is reduced, $MoO_3$ is only reduced to Mo at $900^{\circ}C$. But a compound between $Al_2O_3$ and Mo is not formed up to $1300^{\circ}C$. In the case of $Al_2O_3-MoO_3-MnO_2$ mixture, an intermediate compound $Mn_2Mo_3O_8$ is firstly formed at $900^{\circ}C$ and changes to $MnAl_2O_4$ at $1100^{\circ}C{\sim}1300^{\circ}C$. $Al_2O_3/Mo/MnO_2$ composite are manufactured by a selective reduction process in which Mo is only reduced in the powder mixture of $Al_2O_3,\;MoO_3\;and\;MnO_2$ oxide. For $Al_2O_3/Mo$ composite, the average grain size was not changed with increasing Mo content because of inhibition of grain growth of $Al_2O_3$ matrix in the presence of Mo particles. Fracture strength increased with increasing Mo content due to phenomenon of grain growth inhibition of $Al_2O_3$ matrix. Hardness decreased because of a lower hardness value of Mo, whereas fracture toughness increased. For $Al_2O_3,\;Mo\;and\;MnO_2$ composite, grain growth was facilitated by MnOB and it showed a lower fracture strength because of grain growth effect with increasing Mo and $MnO_2$ content. Hardness decreased because of the grain growth of matrix and coalesced Mo particles to be located in grain boundary, whereas fracture toughness increased.

Fracture Behaviors of Oxide Scales on the Metallic Substrate and the Influence of Oxide Scales for the Strength of materials (산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향)

  • ;;T. Narita
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.187-190
    • /
    • 2003
  • An Fe-25Cr steel was oxidized in Ar at 973K with or without external stesses of 30~35Mpa. A 0.1 ${\mu}{\textrm}{m}$ thick Cr$_2$O$_3$scales was formed during pre-treatment in Ar. Cracking on the oxides scales commenced at the alloy grain boundary by the end of second creep stage, arrayed almost perpendicular to the direction of the tensile directions. On the contrary, a scale formed in $N_2$-0.1%SO$_2$shows poor adherence on the metal substrate. In this case, the strength of materials is much lower than in Ar

  • PDF

A Study on Wear Characteristics of Degraded Stainless Steel (열화된 스테인리스강의 마모특성에 관한 연구)

  • Cho, Sung-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.

A Study on Degradation Estimation of 2.25Cr-1Mo Steel Using Ultrasonic Lamb Wave (램파를 이용한 2.25Cr-lMo재의 열화평가에 관한 연구)

  • 이상용;박익근;박은수;권숙인;조윤호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.324-329
    • /
    • 2001
  • The destructive method is reliable and widely used for the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials by nondestructive evaluation is strongly desired. In this paper, the use of guided wave was suggested for the evaluation of thermally damaged 2.25 Cr-lMo steel as an alternative way to compensate for limitations of fracture tests. The observation of microstructure variations of the material including carbide precipitation increase and spheroidization near grain boundary was conducted and the correlation with the guided wave features such as energy loss ratio and group velocity changes was investigated. Through this study, the feasibility of ultrasonic guided wave evaluation for thermally damaged materials was explored.

  • PDF

Phase Transformation and Mechanical Properties of Reaction Sintered Mullite-Zirconia (Yttria) Composite (반응소결된 물라이트-지르코니아(이트리아) 복합체의 상변태와 기계적 성질에 관한 연구)

  • 오경영;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.549-555
    • /
    • 1991
  • Mullite-zirconia (0∼4 mol% yttria) composites were obtained by In-situ sintering of zircon and alumina mixture, and their mechanical properties were studied in conjuction with microstructure observation. Martensitic transformation temperature (Ms) of zirconia dispersed in the mullite matrix decreased with Y2O3 contents and was about 600$^{\circ}C$ for ZrO2 containing 4 mol% Y2O3. On cooling of this composites, tetragonal to monoclinic phase transformation induced microcracks at the grain boundary of mullite matrix. The microcracks seemed to absorb the fracture energy in stress field during mechanical tests. Therefore, toughening mechanisms of this composite were considered to nucleation and extension of microcrack, and crack deflection mechanism due to the difference of thermal expansion coefficient between matrix and dispersed phase.

  • PDF

On the Strengthening mechanisms of INCONEL 690 (인코넬 690의 강화기구에 관한 연구)

  • 허무영;박용수;안성욱
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.213-220
    • /
    • 1997
  • The microstructure of the inconel 690 alloy was varied by the solution treatment and the thermal treatment. The specimens having different microstructures were examined in order to understand the strengthening mechanism of the inconel 690. The level of supersaturation of carbon in the solid solution was increased by applying a longer solution treatment at 115$0^{\circ}C$. As increased carbon content in the solid solution, more carbides precipitated during the thermal treatment at $700^{\circ}C$. Since the carbides played a role of obstacle on the movement of dislocations, a higher tensile strength was obtained in the sample having a large number of carbider. The accumulation of dislocations at the grain boundary carbides caused the development of intergranular fracture which led to a lower elongation.

  • PDF