• Title/Summary/Keyword: Grain alignment

Search Result 56, Processing Time 0.045 seconds

POLARIZATION OF FIR EMISSION FROM T TAURI DISKS

  • Cho, Jung-Yeon;Lazarian, A.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.113-118
    • /
    • 2007
  • Recently far infra-red (FIR) polarization of the $850{\mu}m$ continuum emission from T Tauri disks has been detected. The observed degree of polarization is around 3 %. Since thermal emission from dust grains dominates the spectral energy distribution at the FIR regime, dust grains might be the cause of the polarization. We explore alignment of dust grains by radiative torque in T Tauri disks and provide predictions for polarized emission for disks viewed at different wavelengths and viewing angles. In the presence of magnetic field, these aligned grains produce polarized emission in infrared wavelengths. When we take a Mathis-Rumpl-Nordsieck-type distribution with maximum grain size of $500-1000{\mu}m$, the degree of polarization is around 2-3 % level at wavelengths larger than ${\sim}100{\mu}m$. Our study indicates that multifrequency infrared polarimetric studies of protostellar disks can provide good insights into the details of their magnetic structure.

Grain growth and superconducting properties of melt-processed (Y-Sm-Nd)-Ba-Cu-O composite oxides

  • Kim, So-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.141-144
    • /
    • 2005
  • [ $(Y_{0.5}Sm_{0.25}Nd_{0.25})Ba_2Cu_3O_y$ ] [(YSN)-123] high $T_c$ composite superconductors with $CeO_2$ addition were systematically investigated by top seeded melt growth (TSMG) process in air atmosphere. A melt textured $NdBa_2Cu_3O_y$ (Nd-123) single crystal was used as a seed for achieving the c-axis alignment large grains perpendicular to the surface of (YSN)-123 composite oxides. The size of $(Y_{0.5}Sm_{0.25}Nd_{0.25})_2BaCuO_5$ [(YSN)211] nonsuperconducting inclusions of the melt textured (YSN)-123 samples with $CeO_2$ addition were remarkably reduced and uniformly distributed within the (YSN)123 superconducting matrix except in the region very close to the Nd-123 seed crystal. The sample showed a sharp superconducting transition of 91 K.

The effect of twisting on microstructure and AC losses of Bi-2223 superconductor tapes (Twisting된 Bi-2223 선재의 미세조직 관찰 및 교류손실 특성평가)

  • 장석헌;임준형;김정호;김규태;주진호;나완수;정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.126-128
    • /
    • 2003
  • The effect of twisting on the microstructure and AC losses of Bi-2223 superconductor tape has been evaluated. Twisting pitches of the tapes are in the range of 12~60 mm and uniformly deformed. The critical current of the tapes was measured to decreased with decreased pitch. This reduction is believed to be due to the irregular interface, poor grain alignment. In addition, AC losses of the tape reduced as the pitch decreased probably due to combined effects of lower critical current and electrically decoupled filament of twisted tape.

  • PDF

Effect of internal Stress on the Strength of PZT Cermics (PZT 세라믹스의 강도에 미치는 내부응력의 영향)

  • 태원필;윤여범;김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.49-55
    • /
    • 1996
  • The aim of this study is to investigate the change of bending strength and fatigue strength in the unpoled and poled Pb(Zr, Ti)O3 ferroelectrics of tetragonal morphotropic phase boundary (MPM) and rhombohedral com-position in terms of internal stress which is measured by XRD method. Before poling treatment the highest bending strength was found in rhombohedral composition. After poling treatment the bending strength decreas-ed in all compositions but it decreased most remarkably in tetragonal composition. The most prominent de-crease of bending strength after poling treatment in tetragonal was attributed to the occurrence of microcracks due to highanisotropic internal stress around grain boundary which was induced of bending strength after poling in MPB and rhombohedral composition was not due to the occurrence of microcracks but to the increase in tensile internal stress perpendicular to the direction of crack propagation by domain alignment. Fatigue strength was higher before poling treatment than after poling treatment for various compositions.

  • PDF

A Study on Fracture Behavior and Impact Stability of Sintered Rare-earth Permanent Magnets

  • Li, Wei;Li, Anhua;Wang, Huijie;Dong, Shengzhi;Guo, Yongquan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.790-791
    • /
    • 2006
  • The fracture behavior and mechanical characteristics of sintered rare-earth magnets were investigated. It shows that the fracture behavior and bending strength of the magnets obviously exhibit anisotropy. Sm-Co magnets tend to cleavage fracture in the close-packed (0001) plane or in the ($10\bar{1}1$) plane. The fracture mechanism of $Nd_2Fe_{14}B$ magnet mainly appears to be intergranular fracture. The anisotropy of fracture behavior and mechanical strength of sintered rare-earth magnets is caused mainly by the strong crystal-structure anisotropy and the grain alignment texture. The effects of Nd content, and Pr, Dy substitution on the impact stability of $Nd_2Fe_{14}B$ magnets were also reported.

  • PDF

Effect of Chemical Vapor Deposition Condition on the Growth of SiC Thin Films (화학기상증착조건이 SiC 박막의 성장에 미치는 영향)

  • Bang, Wook;Kim, Hyeong-Joon
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.98-110
    • /
    • 1992
  • B-SiC thin films were fabricated on Si(100) substrate under 1 atom by fVD. The effects of deposition conditions on the growth and the properties especially crystallinity and prefer ential alignment of these thin films were investigated. SiH4 and CH4 were used as source gases and H2 as Carrier gas. Th9 growth Of B-SiC thin films with changing parameters such as the growth temperature, the ratio of source gases (SiH4/CH4 ) and the total amount of source gases. The grown thin films were characterized by using SEM, a -step, XRD, Raman Spectro- scopy and TEM. Chemical conversion process improved the quality of thin films due to the formation of SiC buffer layer. The crystallinity of SiC thin films was improved when the growth temperature was higher than l150t and the amount of CH4 exceeded that of SiH4. The better crystallinity, the better alignment to the crystalline direction of substates. TEM analyses of the good quality thin films showed that the grain size was bigger at the surface than at the interface and the defect density is not depend on the ratio of the source gases.

  • PDF

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

DC/RF Magnetron Sputtering deposition법에 의한 $TiSi_2$ 박막의 특성연구

  • Lee, Se-Jun;Kim, Du-Soo;Sung, Gyu-Seok;Jung, Woong;Kim, Deuk-Young;Hong, Jong-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.163-163
    • /
    • 1999
  • MOSFET, MESFET 그리고 MODFET는 Logic ULSIs, high speed ICs, RF MMICs 등에서 중요한 역할을 하고 있으며, 그것의 gate electrode, contact, interconnect 등의 물질로는 refractory metal을 이용한 CoSi2, MoSi2, TaSi2, PtSi2, TiSi2 등의 효과를 얻어내고 있다. 그중 TiSi2는 비저항이 가장 낮고, 열적 안정도가 좋으며 SAG process가 가능하므로 simpler alignment process, higher transconductance, lower source resistance 등의 장점을 동시에 만족시키고 있다. 최근 소자차원이 scale down 됨에 따라 TiSi2의 silicidation 과정에서 C49 TiSi2 phase(high resistivity, thermally unstable phase, larger grain size, base centered orthorhombic structure)의 출현과 그것을 제거하기 위한 노력이 큰 issue로 떠오르고 있다. 여러 연구 결과에 따르면 PAI(Pre-amorphization zimplantation), HTS(High Temperature Sputtering) process, Mo(Molybedenum) implasntation 등이 C49를 bypass시키고 C54 TiSi2 phase(lowest resistivity, thermally stable phase, smaller grain size, face centered orthorhombic structure)로의 transformation temperature를 줄일 수 있는 가장 효과적인 방법으로 제안되고 있지만, 아직 그 문제가 완전히 해결되지 않은 상태이며 C54 nucleation에 대한 physical mechanism을 밝히진 못하고 있다. 본 연구에서는 증착 시 기판온도의 변화(400~75$0^{\circ}C$)에 따라 silicon 위에 DC/RF magnetron sputtering 방식으로 Ti/Si film을 각각 제작하였다. 제작된 시료는 N2 분위기에서 30~120초 동안 500~85$0^{\circ}C$의 온도변화에 따라 RTA법으로 각각 one step annealing 하였다. 또한 Al을 cosputtering함으로써 Al impurity의 존재에 따른 영향을 동시에 고려해 보았다. 제작된 시료의 분석을 위해 phase transformation을 XRD로, microstructure를 TEM으로, surface topography는 SEM으로, surface microroughness는 AFM으로 측정하였으며 sheet resistance는 4-point probe로 측정하였다. 분석된 결과를 보면, 고온에서 제작된 박막에서의 C54 phase transformation temperature가 감소하는 것이 관측되었으며, Al impuritydmlwhswork 낮은온도에서의 C54 TiSi2 형성을 돕는다는 것을 알 수 있었다. 본 연구에서는 결론적으로, 고온에서 증착된 박막으로부터 열적으로 안정된 phase의 낮은 resistivity를 갖는 C54 TiSi2 형성을 보다 낮은 온도에서 one-step RTA를 통해 얻을 수 있다는 결과와 Al impurity가 존재함으로써 얻어지는 thermal budget의 효과, 그리고 그로부터 기대할 수 있는 여러 장점들을 보고하고자 한다.

  • PDF

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Study of Space Charge of Metal/copper(Ⅱ)-phthalocyanine Interface (금속/copper(Ⅱ)-phthalocyanine 계면에서의 Space Charge 연구)

  • Park, Mie-Hwa;Yoo, Hyun-Jun;Yoo, HyungKun;Na, Seunguk;Kim, Sonshui;Lee, Kie-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.350-356
    • /
    • 2005
  • We report the space charge and the surface potential of the interface between metal and copper(Ⅱ)-phthalocyanine(CuPc) thin films by measuring the microwave reflection coefficients S/sub 11/ of thin films using a near-field scanning microwave microscope(NSMM). CuPc thin films were prepared on Au and Al thin films using a thermal evaporation method. Two kinds of CuPc thin films were prepared by different substrate heating conditions; one was deposited on preheated substrate at 150。C and the other was annealed after deposition. The microwave reflection coefficients S/sub 11/ of CuPc thin films were changed by the dependence on grain alignment due to heat treatment conditions and depended on thickness of CuPc thin films. Electrical conductivity of interface between metal and organic CuPc was changed by the space charge of the interface. By comparing reflection coefficient S/sub 11/ we observed the electrical conductivity changes of CuPc thin films by the changes of surface potential and space charge at the interface.