• Title/Summary/Keyword: Grain additives

Search Result 180, Processing Time 0.027 seconds

The Effect of Additives on Twining in ZnO Varistors

  • Han, Se-Won;Kang, Hyung-Boo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.207-212
    • /
    • 1998
  • By comparison of the experimental results in two systems of ZnO varistors, it's appear that Sb2O3 is the indispensable element for twining in ZnO varistors and the Zn7Sb2O12 spinel acts as the nucleus to form twins. Al2O3 is not the origin of twining in ZnO varistor, but it was found that Al2O3 could strengthen the twining and form a deformation twining by ZnAl2O4 dragging and pinning effect. The inhibition ratios of grain and nonuniformity of two systems ZnO varistors increase with the increase of Al2O3 content. The twins affect the inhibition of grain growth, the mechanism could be explained follow as: twins increase the mobility viscosity of ZrO grain and grain boundary, and drag ZrO grain and liquid grain boundary during the sintering, then the grain growth is inhibited and the microstructure becomes more uniform.

  • PDF

Effect of Sr and (Ti-B) Additives on Tensile Properties of AC4A Recycled Aluminum Casting Alloys (재활용 AC4A 알루미늄 합금의 인장특성에 미치는 (Ti-B), Sr 첨가제의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.87-94
    • /
    • 2018
  • The effects of Sr and (Ti-B) additives on the tensile properties of AC4A recycled (35% scrap content) aluminum alloys were investigated. An acicular morphology of the eutectic Si phase of as-cast specimens was converted to a fibrous morphology upon the addition of Sr. Moreover, morphology of the Sr modified eutectic Si phase became finer due to a T6 heat treatment. The grain size of the ${\alpha}$-solid solution was decreased by the addition of (Ti-B) additives. Depending on the treatment conditions of the as-cast specimens, i.e., no addition, a Sr addition and a (Ti-B)+Sr addition, the tensile strength levels of the as-cast specimens were 182, 192, and 204MPa, respectively. The corresponding strengths of T6 heat-treated specimens were 293, 308, and 318MPa. Elongations of the as-cast specimens were 2.2, 3.1, and 5.6%, and the corresponding elongations of the T6 heat-treated specimens were 4.6, 6.1, and 7.6%. The percentage of the reduced section area in the tensile specimens was also increased by the Sr and (Ti-B) additives. Sr and (Ti-B) additives changed the microstructure and the distribution of defects in the castings, resulting in an improvement of the tensile properties of AC4A aluminum alloys. According to our test results, recycled (35% scrap content) AC4A aluminum alloy met all of the KS requirements of the tensile strength and elongation values of AC4A aluminum alloy except for the elongation value of the one specimen condition, in this case the as-cast no-addition condition.

Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys (AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.37 no.5
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

Recent Advances in Microstructural Tailoring of Silicon Nitride Ceramics and the Effects on Thermal Conductivity and Fracture Properties

  • Becher Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.525-531
    • /
    • 2005
  • Tailoring the microstructure and the composition of silicon nitride ceramics can have profound effects on their properties. Here it is shown that the grain growth behavior, in particular its anisotropy, is a function of the specific additives, which allow one to tune the microstructure from one consisting of more equiaxed grains to one with very elongated grains. Recent studies are discussed that provide an understanding of the atomic level processes by which these additives influence grain shapes. Next the microstructural (and compositional) parameters are discussed that can be used to modify the thermal conductivity, as well as fracture toughness of silicon nitride ceramics. As a result of the open <0001> channels in $\beta-Si_3N_4$, the c-axis conductivity can be exceptionally high. Thus, the formation of elongated c-axis grains, particularly when aligned can result in conductivity values approaching those of AlN ceramics. In addition, the controlled formation of elongated grains can also be used to significantly enhance the fracture toughness. At the same time, both properties are shown to be affected by the composition of the densification additives. Utilizing such understanding, one will be able to tailor the ceramics to achieve the properties desired for specific applications.

Effect of Additives and Cooling Rates on the Electrical Resistivity of BaTiO3 Ceramics (I) (BaTiO$_3$ 세라믹스의 전기저항에 미치는 첨가제와 냉각속도의 영향(I) - TiO$_2$, SiO$_2$ 및 Al2O$_3$ 단미첨가 -)

  • 염희남;하명수;이재춘;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.661-666
    • /
    • 1991
  • Microstructure, room temperature resistivity and temperature coefficient of resistance of BaTiO3 ceramics were studied by varying cooling rates and additives such as TiO2, SiO2 and Al2O3. The basic composition of the BaTiO3 ceramics was formed by adding 0.25 mol% Dy2O3 and 0.07 mol% MnO2 to the BaTiO3 composition. Unlike the additives of SiO2 and Al2O3, an addition of 2 mol% TiO2 to the basic composition was effective to control the grain size of the fired specimens. The room temperature resistivity and the temperature coefficient of resistance for the specimen of this particular compostion were measured as about 102 ohm.cm and 16.5%/$^{\circ}C$, respectively. The observed grain boundary phase of the sample with Al2O3 additive was BaTi3O7, while that of the samples with SiO2 additive was confirmed as BaTiSiO5.

  • PDF

Change of high temperature strength of $Si_{3}N_{4}/SiC$ nanocomposites with sintering additives (소결조제에 따른 $Si_{3}N_{4}/SiC$ 초미립복합재료의 고온강도변화)

  • 황광택;김창삼;정덕수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.558-563
    • /
    • 1996
  • Fracture strength of $Si_{3}N_{4}/20$ vol% SiC nanocomposites with fifferent sintering additives was measured. Strength of nanocomposites with 6 wt% $Y_{2}O_{3}$ and 2 wt% $Al_{2}O_{3}$ as sintering additives was higher at room temperature but significant strength degradation at elevated temperature was occured due to the softening of grain boundary phase. Fracture strength of 8 wt% $Y_{2}O_{3}$ doped sample was higher than that of $Al_{2}O_{3}$ added sample at $1400^{\circ}C$. The retention of high temperature strength in 8 wt% $Y_{2}O_{3}$ doped sample can be attributed to high softening temperature and crystallization of grain boundary glassy phase.

  • PDF

Effect of Sintering Additives on the Oxidation Behavior of Hot Pressed Silicon Nitride (가압소결한 질화규소의 산화거동에 미치는 소결 첨가제의 영향)

  • 최헌진;김영욱;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.777-783
    • /
    • 1994
  • Oxidation behavior of hot-pressed silicon nitride ceramics with various sintering additives has been investigated. The weight gain of each specimens has shown in the range of 0.11 mg/$\textrm{cm}^2$ ~3.4 mg/$\textrm{cm}^2$ at 140$0^{\circ}C$ for 192 h and eleven compositions have shown good oxidation resistance with the weight gain below 0.5 mg/$\textrm{cm}^2$. The oxidation rate has been shown to obey the parabolic rate law and the oxidized surface has consisted of $\alpha$-cristobalite and M2Si2O7 or MSiO3 (M=rare earth or transition metals) phase. The oxidation rate of each specimens has related to the eutectic temperature between additive oxide and SiO2, and ionic radius of additive oxides, respectively. From the above results, it could be concluded that the oxidation behavior of hot pressed silicon nitride is dominated by the high temperature properties of grain boundary glassy phase and the high temperature properties of grain boundary glassy phase are affected by the ionic radius of additive oxides.

  • PDF

EFFECT OF BINARY ADDITIVES ON THE MAGNETIC PROPERTIES OF MECHANICALLY GROUND Fe-Nd-B MAGNETS

  • Jang, T.S.;Park, J.D.;Jeung, W.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.421-426
    • /
    • 1995
  • The magnetic properties of the hot-pressed magnets made from the Fe-Nd-B alloys, mechanically ground and subsequently blended with binary additives such as Al-Cu and Ag-Zn before hot pressing, were investigated. The coercivities of the magnets increased as the concentration of Al-Cu increased up to 1 wt.% or up to 3 wt.% in the case of Ag-Zn. At higher concentrations the coercivities decreased markedly. The maximum gain in coercivity by the addition was about 20 %. typical values of $_{i}H_{c}$ and $B_{r}$ of a hotpressed magnet containing 1 wt.% Al-Cu were 18 kOe and 7 kG, respectively. It was found that Cu, Ag, and Zn, which diffused into the magnet during hot pressing, were mostly concentrated on the Nd-rich grain boundary phase whereas Al was present not only in the grain boundary region but also in the matrix grains.

  • PDF

Effects of Additives and Atmospheres on the Grain Growth of TiO2 Ceramics (분위기와 첨가제가 TiO2 세라믹스의 입자성장에 미치는 영향)

  • 박정현;최헌진;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.390-398
    • /
    • 1988
  • Effects of atmospheres and adidtives on the grain growth of TiO2 ceramics were investigated. In the range of 1300~140$0^{\circ}C$, grain growth was increased in CO2 as compared with O2 atmosphere and the grain boundary migration activation energy was lower than the diffusion activation energy of oxygen ion in TiO2. Also, in the case of addition of oxides, the grain growth was increased by oxides acting as a acceptor andinhibited by oxides acting as a donor. From the above results, when the oxygen vacancy concentration was increased, the intrinsic grain boundary mobility was increased and the pore drag force was decreased due to the rapid densification. Also it seems that the pore was migrated by the surface diffusion rather than lattice diffusion.

  • PDF

Microstructure and Properties of $Cr_{2}O_{3}$additive ternary PZT Ceramics ($Cr_{2}O_{3}$이 첨가된 PNN-PZT 압전세라믹스에서의 미세구조 및 특성)

  • 박정호;김철수;김성곤;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.972-975
    • /
    • 2001
  • The effect of Cr$_2$O$_3$(0 to 0.5 wt%) doping on the microstructure and electrical properties of ternary Pb(Zr,Ti)O$_3$-Pb(Ni,Nb)O$_3$piezoelectric ceramic has been investigated. Abnormal grain growth (grain size 3.3 to 11.2 $\mu$m) and densification are found. Minor additives of $\leq$0.1 wt% improve the mechanical coupling factor, but with more additives of $\geq$0.2 wt% electrical properties deteriorate. Thus, these phenomna can be ascribed mainly to anomalous developed microstructure. The large grains were composed of a core region that is free of Cr and a surrounding shell region rich in Cr. The interfaces between the core and the shell were composed of misfit dislocations. The mechanical properties of the specimens were strongly influenced by this microstructural change. The microstrutural and compositonal evolution of the specimens containing different amounts of Cr$_2$O$_3$were monitored. Electrical properties were measured and related to the variations in the microstructure.

  • PDF