• 제목/요약/키워드: Grain Size Effect

검색결과 1,187건 처리시간 0.028초

Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.506-510
    • /
    • 2017
  • One of the characteristics of polycrystalline graphene that determines its material properties is grain size. Mechanical properties such as Young's modulus, yield strain and tensile strength depend on the grain size and show a reverse Hall-Petch effect at small grain size limit for some properties under certain conditions. While there is agreement on the grain size effect for Young's modulus and yield strain, certain MD simulations have led to disagreement for tensile strength. Song et al. showed a decreasing behavior for tensile strength, that is, a pseudo Hall-Petch effect for the small grain size domain up to 5 nm. On the other hand, Sha et al. showed an increasing behavior, a reverse Hall-Petch effect, for grain size domain up to 10 nm. Mortazavi et al. also showed results similar to those of Sha et al. We suspect that the main difference of these two inconsistent results is due to the different modeling. The modeling of polycrystalline graphene with regular size and (hexagonal) shape shows the pseudo Hall-Petch effect, while the modeling with random size and shape shows the reverse Hall-Petch effect. Therefore, this study is conducted to confirm that different modeling is the main reason for the different behavior of tensile strength of the polycrystalline structures. We conducted MD simulations with models derived from the Voronoi tessellation for two types of grain size distributions. One type is grains of relatively similar sizes; the other is grains of random sizes. We found that the pseudo Hall-Petch effect and the reverse Hall-Petch effect of tensile strength were consistently shown for the two different models. We suspect that this result comes from the different crack paths, which are related to the grain patterns in the models.

쌀 입자크기가 흰쌀죽의 이화학적 특성에 미치는 영향 (Effect of Grain Size on the Physicochemical Properties of Rice Porridge)

  • 양윤형;오상희;김미리
    • 한국식품조리과학회지
    • /
    • 제23권3호통권99호
    • /
    • pp.314-320
    • /
    • 2007
  • The objective of this study was to investigate the effect of grain size on the physicochemical properties of rice porridge. Here, the grain size of the rice was classified as whole grain, half grain, and flour by traditional Korean cooking methods. The viscosity of the rice flour porridge was highest for the among the three different grain size porridges. In the amylographs, the increase in viscosity for the whole grain porridge was higher than that of the rice flour porridge during cooling. The soluble solid and reducing sugar contents of the rice porridges increased according to the rice grain size, while the blue value decreased. The SDI (starch digestion index) increased according to the rice grain size. The RDS (rapidly digestible starch) was highest while the SDS (slowly digestible starch) the lowest in the rice flour porridge. The morphologies of the rice porridges were examined by SEM and showed a smoother surface and more exudated gelatinized granules in the rice flour than in the whole grain rice porridge. In conclusion, rice porridges made from the smallest possible grain size such as flour may be helpful for people with weaker digestive systems such as infants, the elderly, and hospital patients.

입자크기와 열처리 분위기 변화에 따른 Y-TZP에서의 상안정성 변화 (Effect of Grain Size and Heat-treating Atmosphere on the Phase Stability of Y-TZP)

  • 정태주;안승수;송은화;오경식;이종숙;김영식
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.360-365
    • /
    • 2006
  • The phase stability of tetragonal phase in Y-TZP was investigated in terms of the distribution of grain sizes and heat-treating atmosphere. Y-TZP with various grain sizes were prepared using duration time at $1600^{\circ}C$ as experimental parameter. Accumulated grain size distributions were built from the SEM micrographs and the amount of tetragonal phase were measured using XRD. Both results were compared to determine the critical grain size before and after heat-treatment in vacuum. The critical grain size drastically decreased compared with the small increase of average grain size due to the autocatalytic effect which critically affects the tetragonal to monoclinic phase transformation. After heat-treatment in reductive atmosphere critical grain size relatively increased due to the stabilization of tetragonal phase. The formation of oxygen vacancies during heat-treatment was ascribed to the increase of stability.

EBSD를 이용한 $SrTiO_3$의 입자 크기 및 입자 배향 분포 (EBSD studies of the grain size and grain orientation distribution of $SrTiO_3$)

  • 박명범;;조남희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.46-46
    • /
    • 2006
  • $SrTiO_3$ was annealed at two different annealing times (1 h and 16 h) to investigate the annealing effect on the grain size and orientation distribution. Electron backscattered diffraction (EBSD) was used to analyze the grain size and grain orientation distributions of the $SrTiO_3$. It is possible to understand the annealing effect on the microstructure evolution, by comparing the grain size and orientation distribution of the $SrTiO_3$ as a function of annealing time.

  • PDF

압전변압기용 PT-PZ-PNN 세라믹스의 그레인 크기에 따른 압전특성 (The Piezoelectric Characteristics Depending on the GrainSize of the PT-PZ-PNN Ceramics)

  • 박정호;김철수;김성곤;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제14권10호
    • /
    • pp.815-820
    • /
    • 2001
  • The piezoelectric properties of the PT-PZ-PNN system ceramics were investigated depending on the variati on of the grain size. The grain size was varied by sintering temperature, and additive. The effect of the grain size on the electrical, dielectric, and piezoelectric properties was studied with respect to the feasibility of the application for the piezoelectric transformer. Grain size increased as the PMW contents increased. The smaller the particle size used, the smaller the grain size obtained. Specimens are densily sintered. Dielectric and piezoelectric properties are not always improved in proportion to the grain sizes. When he particle size are fine and the grain size are increased properly with the optimum additives, the piezoelectric preperties have good values. the specimen sintered at 1200$\^{C}$ with PMW 2 mol% and MnO$\_$2/ 0.5wt% contents exhibited good piezoelectric properties for a piezoelectric transformer.

  • PDF

Al-Si-Mg계 주조합금의 미세조직에 미치는 Ti 및 Sr첨가 영향 (Effect of Ti and Sr on the Microstructure of Al-Si-Mg Casting Alloy)

  • 정재영;김경현;김창주
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.71-78
    • /
    • 1990
  • This investigation was undertaken to establish the technologies of grain refinement and modification, and to characterize material properties, essential for high quality aluminum alloy castings. Grain refinement seldom changed DAS and eutectic Si size, but largely decrease grain size. The variations of grain size induced by grain refinement had a great influence on the elongation without changes in the tensile strength or yield strength. The optimum Ti level lies between 0.1% and 0.16% to achieve the best possible mechanical properties. DAS and grain size were little affected, but eutectic Si size was greatly refined by modification. The variation of eutectic Si size had a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The Sr content of 0.015% is optimum to modification.

  • PDF

과부하 열처리를 적용하여 용융드래그방법으로 제작한 마그네슘합금의 특성 (Characteristics of Magnesium Alloy Fabricated by Melt Drag Method with Applying Overheating Treatments)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.414-418
    • /
    • 2022
  • Magnesium alloy is the lightest practical metal. It has excellent specific strength and recyclability as well as abundant reserves, and is expected to be a next-generation structural metal material following aluminum alloy. This paper investigated the possibility of thin plate fabrication by applying a overheating treatment to the melt drag method, and investigating the surface shape of the thin plate, grain size, grain size distribution, and Vickers hardness. When the overheating treatment was applied to magnesium alloy, the grains were refined, so it is expected that further refinement of grains can be realized if the overheating treatment is applied to the melt drag method. By applying overheating treatment, it was possible to fabricate a thin plate of magnesium alloy using the melt drag method, and a microstructure with a minimum grain size of around 12 ㎛ was obtained. As the overheating treatment temperature increased, void defects increased on the roll surface of the thin plate, and holding time had no effect on the surface shape of the thin plate. The fabricated thin plate showed uniform grain size distribution. When the holding times were 0 and 30 min, the grain size was refined, and the effect of the holding time became smaller as the overheating treatment temperature increased. As the overheating temperature becomes higher, the grain size becomes finer, and the finer the grain size is, the higher the Vickers hardness.

마그네슘합금 ZK 60의 결정립 크기에 따른 스프링백 특성 분석 (Experimental Analysis on the Effect of Grain Size of ZK60 Sheet on the Spring-Back Characteristics)

  • 강성훈;박희대;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.398-400
    • /
    • 2008
  • In this work, an air-bending test using magnesium alloy ZK60 sheet was carried out at the various temperatures from room temperature to $300^{\circ}C$ in order to investigate the effect of grain size on the spring-back characteristic. It was found out from experiments that the amount of spring-back was nearly zero at all temperature range when the specimens with grain sizes of 14.66 and $60.71{\mu}m$ were bent by $90^{\circ}$. On the other hand, the spring-back amount dramatically increased at room temperature and phenomenon of spring-go was observed at high temperature when the specimen with submicro grain size of $0.98{\mu}m$ was bent by $90^{\circ}$. From this kind of different spring-back characteristics according to the grain size, it was confirmed that the grain size of material is one of the important factors which have an effect on the spring-back.

  • PDF

複合組織鋼의 부식피로파괴에 미치는 3.5% NaCl水溶液의 pH와 母相粒徑의 效果 (Effect of pH in 3.5% NaCl aqueous solution and ferrite grain size on corrosion fatigue fracture of dual phase steel)

  • 오세욱;강호민
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.867-876
    • /
    • 1987
  • 본 연구에서는 보통강재인 SS 41 강을 열처리하여 얻은 M.E.F.복합조직강의 모상입경변화와 3.5% NaCl수용액의 pH변화 조건하에서 반복굽힘피로실험을 하여 부식 피로파괴에 미치는 영향에 대해 고찰하였다.

The effect of the initial BSCCO 2212 grain size on the final grain size and the formation of BSCCO 2223

  • Yoo, Jai-Moo;Park, Myoung-Je;Kim, Hai-Doo;Chung, Hyung-Sik;Ko, Jae-Woong
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.285-288
    • /
    • 2000
  • The effect of the initial BSCCO 2212 grain size on the final gain size and the formation of the BSCCO 2223 was studied using a powder precursor synthesized by two-powder method. 2212 and CaCuO$_2$ tapes were prepared by dip coating and joined by pressing and then followed by the repeated thermo mechanical treatment. The samples were characterized by XRD and SEM analysis. The formation and grain size of the BSCCO 2223 depended on the initial BSCCO 2212 grain size.

  • PDF