• Title/Summary/Keyword: Grain Size Distributions

Search Result 96, Processing Time 0.027 seconds

Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • One of the characteristics of polycrystalline graphene that determines its material properties is grain size. Mechanical properties such as Young's modulus, yield strain and tensile strength depend on the grain size and show a reverse Hall-Petch effect at small grain size limit for some properties under certain conditions. While there is agreement on the grain size effect for Young's modulus and yield strain, certain MD simulations have led to disagreement for tensile strength. Song et al. showed a decreasing behavior for tensile strength, that is, a pseudo Hall-Petch effect for the small grain size domain up to 5 nm. On the other hand, Sha et al. showed an increasing behavior, a reverse Hall-Petch effect, for grain size domain up to 10 nm. Mortazavi et al. also showed results similar to those of Sha et al. We suspect that the main difference of these two inconsistent results is due to the different modeling. The modeling of polycrystalline graphene with regular size and (hexagonal) shape shows the pseudo Hall-Petch effect, while the modeling with random size and shape shows the reverse Hall-Petch effect. Therefore, this study is conducted to confirm that different modeling is the main reason for the different behavior of tensile strength of the polycrystalline structures. We conducted MD simulations with models derived from the Voronoi tessellation for two types of grain size distributions. One type is grains of relatively similar sizes; the other is grains of random sizes. We found that the pseudo Hall-Petch effect and the reverse Hall-Petch effect of tensile strength were consistently shown for the two different models. We suspect that this result comes from the different crack paths, which are related to the grain patterns in the models.

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

Grain Shape and Grain Growth Behavior in the Na1/2Bi1/2TiO3-BaTiO3 System (Na1/2Bi1/2TiO3-BaTiO3 계에서 입자모양과 입자성장 거동)

  • Moon Kyoung-Seok;Kang Suk-Joong
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.119-123
    • /
    • 2006
  • The grain growth behavior of $0.95Na_{1/2}Bi_{1/2}TiO_{3}-0.05BaTiO_{3}$ (NBT-5BT) has been investigated with respect to the grain shape. The powder compacts of NBT-5BT were sintered at 1200 for various times. The corresponding equilibrium shape was a round-edged cube with flat {100}-faces. Abnormal grains were not observed in the specimens sintered for 1 to 12 h but abnormal grains appeared when sintered for 24 h. Before the formation of abnormal grains, a valley was observed in the measured grain size distribution of NBT-5BT, showing that the grain size distribution was a combination of two unimodal distributions. The present result suggests that the grain growth in NBT-5BT was governed by the growth of facet planes which would occur via 2-dimansional nucleation and growth.

Improved Mechanical Properties of Cross Roll Rolled Ni-Cr Alloy (교차롤압연된 Ni-Cr 합금의 기계적 특성 발달)

  • Song, Kuk-Hyun;Kim, Dae-Keun;Son, Hyun-Taek;Lee, Hae-Jin;Kim, Han-Sol;Kim, Won-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.556-562
    • /
    • 2011
  • We carried out this study to evaluate the grain refining in and the mechanical properties of alloys that undergo severe plastic deformation (SPD). Conventional rolling (CR) and cross-roll rolling (CRR) as SPD methods were used with Ni-20Cr alloy as the experimental material. The materials were cold rolled to a thickness reduction of 90% and subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. For the annealed materials after the cold rolling, electron back-scattered diffraction (EBSD) analysis was carried out to investigate the grain boundary characteristic distributions (GBCDs). The CRR process was more effective when used to develop the grain refinement relative to the CR process; as a result, the grain size was refined from $70{\mu}m$ in the initial material to $4.2{\mu}m$ (CR) and $2.4{\mu}m$ (CRR). These grain refinements have a direct effect on improving the mechanical properties; in this case, the microhardness, yield and tensile strength showed significant increases compared to the initial material. In particular, the CRR-processed material showed more effective values relative to the CR-processed materials. The different texture distributions in the CR (001//ND) and CRR (111//ND) were likely the cause of the increase in the mechanical properties. These findings suggest that CRR can result in materials with a smaller grain size, improved texture development and improved mechanical properties after recrystallization by a subsequent annealing process.

Study on Young's Modulus of Coarse Granular Materials with Grain Size Distribution Adjustment (입도조정된 조립재료의 탄성계수에 대한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Su-Hyung;Lee, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.47-55
    • /
    • 2013
  • In the element test for coarse granular materials, the grain size distributions of the materials are often adjusted, in case the grain size of coarse material in the field is larger than the available maximum grain size of the laboratory test equipment. In this study, we carried out the large cyclic triaxial test to evaluate the effect of the grain size distribution adjustment on Young's modulus in small to intermediate strain level. The test results showed that the coarse granular materials with the adjusted grain size distribution underestimated Young's modulus of the original materials. The difference of Young's modulus was larger in small strain level than in intermediate strain level.

Effect of the Heating Rate on the Microstructure and Fracture Toughness of Silicon Nitride Ceramics (소결시의 승온속도가 질화규소 요업체의 미세조직과 파괴인성에 미치는 영향)

  • 이상훈;이재도;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1227-1232
    • /
    • 1995
  • Effect of heating rate on the microstructure of the silicon nitride ceramics has been investigated. The specimens with composition of 92Si3N4-6Y2O3-2Al2O3 (in wt%) were sintered at 176$0^{\circ}C$ under 127 kPa for 3h in N2 atmosphere at various heating rates from 1 to 10$0^{\circ}C$/min. The grain size of larger than 2${\mu}{\textrm}{m}$ and less than 1${\mu}{\textrm}{m}$ were measured and compared for the specimens. Regardless of heating rate, grain size of all the specimens showed bimodal distributions and the fracture toughness remained in the range of 5.53~5.72 MPa.m1/2. However, the aspect ratio of the grains of diameter above 2${\mu}{\textrm}{m}$ increased with the heating rate while their grain size and volume fraction decreased.

  • PDF

Fractal equations to represent optimized grain size distributions used for concrete mix design

  • Sebsadji, Soumia K.;Chouicha, Kaddour
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.505-513
    • /
    • 2020
  • Grading of aggregate influences significantly almost all of the concrete performances. The purpose of this paper is to propose practicable equations that express the optimized total aggregate gradation, by weight or by number of particles in a concrete mix. The principle is based on the fractal feature of the grading of combined aggregate in a solid skeleton of concrete. Therefore, equations are derived based on the so-called fractal dimension of the grain size distribution of aggregates. Obtained model was then applied in such a way a correlation between some properties of the dry concrete mix and the fractal dimension of the aggregate gradation has been built. This demonstrates that the parameter fractal dimension is an efficacious tool to establish a unified model to study the solid phase of concrete in order to design aggregate gradation to meet certain requirements or even to predict some characteristics of the dry concrete mixture.

Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea) (동해 남한국대지 퇴적물의 생물기원 성분 입도 분포의 특성과 고해양학적 의미)

  • Jang, Jun-Ho;Bahk, Jang-Jun;Kim, Eun-Jung;Um, In-Kwon
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.249-261
    • /
    • 2020
  • This study details grain-size distributions (GSDs) of carbonate and biogenic opal fractions of the sediments retrieved from the South Korea Plateau in the East Sea and draws paleocanographic implications from them. The opal-fraction GSDs show fine modes of 10.3 ㎛ and coarse modes of 102.5 ㎛ on average. The fine-mode grains of opal fractions mainly consist of small diatoms and radiolarians including their broken frustules, while the coarse-mode grains are mostly comprised of large warm-water diatoms and radiolarians. Significant positive correlation between opal contents and abundances of the coarse-mode GSDs in the total GSDs suggests that the abundances of the coarse-mode GSDs were controlled by the increased surface productivity of warm-water diatoms during interglacial stages. The carbonate-fraction GSDs show fine modes of 2.4 ㎛ and coarse modes of 99.1 ㎛ on average. The fine-mode grains mainly consist of coccolithophores, while the coarse-mode grains are mostly comprised of intact or broken planktonic foraminifera. The abundances of coarse-mode and fine-mode GSDs were not correlated with carbonate contents, suggesting a complex control exerted by both the degree of carbonate dissolution and the productivity of coccolithophores on the carbonate-fraction GSDs.

Long-Term Simulation of Reservoir Sedimentation Considering Particle-Size Distributions of Suspended Sediment and Bed Materials (부유사 및 하상토 입도분포를 고려한 저수지 퇴사의 장기모의)

  • Kim, Dae Geun;Shin, Kwang Gyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.87-97
    • /
    • 2013
  • The bed change model of HEC-RAS was used to predict the formation of a delta upon an influx of high-density sediment while taking the particle-size distributions of the suspended sediment and bed materials into account. The model was able to reasonably predict both the spatial-temporal distribution of the delta and the amount of deposited sediment according to the grain size. In addition, it was able to estimate the main type of grains that sediment at particular locations at particular times moderately well. It is expected that the simulation and the analysis considering these particle-size distributions of sediment will provide important information on planning and maintenance of the water resource related facilities.

Sedimentary Environments, Geochemical Characteristics of Sediments and River waters, Hwasun-cheon (화순천의 퇴적환경 및 퇴적물과 하천수의 지구화학적 특성)

  • 오강호;고영구;김주용;김해경
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.881-895
    • /
    • 2002
  • Sediments and river waters form the channel of Hwasun-cheon were studied in sedimentological size and geochemical analyses of metallic elements for the purposes of identification of depositional environments and geochemical characteristics. The sizes of sediments are assigned to pebble to coarse sand in mean size and polymodal in distribution. And the sediments are poorly to very poorly sorted and positively skewed. According to the grain size distributions of the sediments, the Hwasun-cheon belongs to gravel-bed river on the basis of the grain size distribution of the sediments. The behaviors of metallic elements in the sediments mainly depend on not grain size distribution but the geology connected with geomorphological reliefs near the stream. Contamination indices(CI) of Zn, Cu and Pb are 2.83 to 6.96 with average 4.31 in the sediments. Hwasun-cheon is assigned to general stream type in accordance with water quality of physical factors and chemical characteristics by Piper's diagram. Though meaningful values of BOD, T-N, T-P were locally depicted near Masan-ri, Hwasun-eup and Jiseok-cheon areas, artificial metal concentration do not represent in the most area of the stream. Sediments and river water are considered that the relatively more or less high metallic contents in the stream are originated from coal mine and urban area.