• Title/Summary/Keyword: Grain

Search Result 10,610, Processing Time 0.046 seconds

Grain Boundary Characteristics and Stress-induced Damage Morphologies in Sputtered and Electroplated Copper Films (스퍼터링 및 전기 도금으로 제조된 구리 박막에서의 표면 결함에 미치는 결정립계의 영향)

  • Park, Hyun;Hwang, Soo-Jung;Joo, Young-Chang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.4-4
    • /
    • 2003
  • Various Cu films were fabricated using sputtering and electroplating with and without additive, and their surface damages after annealing were investigated. After annealing at 43SoC, the difference between damage morphologies of the films was observed. In some films stress-induced grooves along the grain boundaries were observed, while in the others voids at the grain boundary triple junctions were observed. It was also observed that the stress-induced groove was formed along the high energy grain boundaries. It was found out that the difference of the morphologies of surface damages in Cu films depends on not process type but grain boundary characteristics. To explain the morphological difference of surface damages, a simple parameter considering the contributions of grain structures and grain boundary characteristics to surface and grain boundary diffusions is suggested. The effective grain boundary area, which is a function of grain size, film thickness and the fraction of high energy grain boundaries, played a key role in the morphological difference.

  • PDF

Development of the breeding materials with diverse grain size and shape in japonica rice

  • Park, Hyun-Su;Shin, Woon-Chul;Baek, Man-Kee;Nam, Jeong-Kwon;Jeong, Jong-Min;Park, Seul-Gi;Kim, Choon-Song;Cho, Young-Chan;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.67-67
    • /
    • 2017
  • We developed the breeding materials with diverse grain size and shape in japonica rice. Grain size and shape are important factors affecting consumer preference and choice. However, most of Korean japonica rice cultivars have small, short, and round grain. To diversify the grain size and shape of japonica rice, we conducted the breeding program using donor parents, Jizi1560 and Jizi1581. Jizi1560 and Jizi1581 are japonica germplasm with extremely large grain. Four crosses between the each donor parents and high yielding japonica rice cultivars, Deuraechan and Boramchan, were constructed and then anther culture method was applied. We obtained 290 doubled-haploid (DH) lines with appropriated morphological traits and selected 91 DH lines with diverse grain size and shape. The grain related-traits of the selected DH lines showed a higher diversity when compared with 319 cultivars developed by NICS (264 japonica, 13 black, and 32 Tongil type cultivars). We designated the selected DH lines, four parents, and Daeripbyeo 1, large grain japonica cultivar, as the breeding materials for further analysis. The breeding materials were classified into five groups, A to E, based on the grain-related traits. Group A (including Jizi1581) and Group B (including Daeripbyeo 1) showed similar grain width, whereas Group A exhibited longer grain length and heavier grain weight. Group C (including Deuraechan and Boramchan) showed shorter and rounder grain shape and smaller grain size than any other groups. Group D including solely Jizi1560 had extremely large grain, such as the longest grain length, width, and thickness and heaviest grain weight. Group E including only two DH lines had long and slender grain shape, so that showed the highest ratio of length to width. The grain size and shape of the breeding materials exhibited beyond the characteristics of previously developed Korean japonica cultivars. The breeding materials will be applied in the breeding programs to diversify the grain size and shape of japonica rice.

  • PDF

Association of Grain Filling Duration and Leaf Activity with the Grain Yield in Field-Grown Temperate Japonica Rice

  • Yang, Woonho;Kang, Shingu;Park, Jeong-Hwa;Kim, Sukjin;Choi, Jong-Seo;Heu, Sunggi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.120-130
    • /
    • 2018
  • Improvement in rice grain yield has been approached by means of genetic amendment, cultural management, and environmental adaptation. Subjecting the plant during the grain filling period to an appropriate environment plays a key role in achieving a high grain yield in temperate rice. Field experiments were conducted for two consecutive years with two planting times to assess the relations among grain filling traits, loss of leaf activity during the ripening period, and the grain yield of temperate japonica rice with wide environmental variation. Higher grain yields were attained in 2017 than in 2016 and with late planting than with early planting. The high grain yield accompanied a comparatively lesser increase in grain weight at the early filling stage but more gain in grain weight occurred during the late filling stage. Final grain weight correlated positively with grain filling duration but negatively with grain filling rate. Extended grain filling duration was associated with higher cumulative temperature and cumulative solar radiation for an effective grain filling period. The reduction in SPAD value ${\times}$ leaf dry weight from heading to harvest significantly correlated with final grain dry weight in a positive manner. No significant relation was found between grain filling duration and the decrease in SPAD value ${\times}$ leaf dry weight during the grain filling period. The results suggest that grain filling duration and loss of leaf activity during ripening independently contribute to environmentally induced yield improvement in temperate japonica rice.

Improvement of System for Grain Drying, Storing , and Processing in Rural Area (농촌의 주곡 건조.저장.가공 작업체계 개선확립)

  • 서상용;이승규;김용환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-46
    • /
    • 1978
  • To get the goal of self-supply of food grain, improvement of post-harvest grain operations in rural area is under consideration as an important task of agriculture in Korea. This is study is focused on elimination of losses and deteriorations of grain and reduction of labour requirements and funds for post-harvest grain operations. The purpose of this study are presentation of basic data referring to conventional post-harvest grain operations in rural area and suggestion of improving methods for the operations, and also finding out reasonable operating processes of the operations. The result of this study are follows; 1. Grain drying in-the-filed which is performed before threshing has major factors of grain loss during drying, and so should be restrained as possible. Combine harvesting system is recommended among other king of mechanized harvesting systems for restraining in-the-field drying and securing available labors for drying. 2. It is predicted that mechanical grain drying could be prevalent when combine harvesting is taken place. Recommended grain drier for pre-combine harvesting system and for combine harvesting system is batch-type drier and circulating -type drier, respectively. 3. As existing farm storages for grain have insufficient spaces and offer poor conditions for grain storing , it is greatly needed to build up new storage which store only grains. And it is concluded that storing grain in community common storages in desirable. 4. Power supplying system for milling machinery in local milling plants, that a large capacity prime mover supplies power to 4 to 6 kinds of milling machinery simultaeously, should be converted to a system of several small capacity prime movers supplying power to each machiner y for the purpose of reducing extra consumption of energy. 5. Governmental grain, of which Korean farms produced, should be milled and stored in the local milling plant successively for the purpose of reducing transportation fee and stroing facilities. 6. Furture post-havest grain operations-drying, storing and milling should be periormed successively in he community common plant. And average optimum processing capacity of the plant is estimated about 300 metric ton of grain every year.

  • PDF

Equivalent Scattering Area Model of Optical Dot Gain (광학적 망점확대의 상당산란면적 모델에 관한 연구)

  • 강상훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 1994
  • To investigate relations between Grain-shape of plate and Dot-Gain in the lithography, Printing plates were made by Mechanical Grain, Brush Grain and Electrolytic Grain method.Fine multi-grain by electrolytic method of them resulted in less Dot-grain on the paper, more damping water on the none image part of printing plate.

  • PDF

The Effect of Microstructure on the Ionic Conductivity in the $Bi_2O_3-CaO$ System ($Bi_2O_3-CaO$계에서의 미세구조가 이온 전도도에 미치는 영향)

  • 백현덕
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The grain boundary effect on the ionic conductivity was investigated using a.c. admittance analysis in (Bi2O3)0.715(CaO)0.285 oxygen-ion conducting solid electrolyte. As a separated arc representing grain boundary polarization was not observed in the admittance plane, bulk conductivity was measrued for samples with various grain sizes in the temperature range from 48$0^{\circ}C$ to 72$0^{\circ}C$ and the conductivity distribution between grain interior and grain boundary was determined by the reported analytical methods. In the above temperature range, grain boundary worked as a high conductive path instead of blocking layer and ionic conduction through grain boundary was significant. The activation energy for conduction through grain and grain boundary was 78 and 106 kJ/mol, respectively.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain Element (유한요소법의 입자요소를 이용한 박판 성형해석)

  • 구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.439-442
    • /
    • 2003
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

  • PDF

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

High Temperature Deformation Behavior of Nano Grain W Produced by SPD-PM Process

  • Oda, Eiji;Ohtaki, Takao;Kuroda, Akio;Fujiwara, Hiroshi;Ameyama, Kei;Yoshida, Kayo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.126-127
    • /
    • 2006
  • In this study, nano grain W is fabricated by Severe Plastic Deformation-Powder Metallurgy (SPD-PM) process. W powder and W-Re powder mixtures are processed by SPD-PM process, a Mechanical Milling (MM) process. As results, a nano grain structure, whose grain size is approximately 20nm, is obtained in W powder after MM for 360ks. A nano grain W compact, whose grain size 630nm, has excellent deformability above 1273K. A nano grain W-10Re compact is composed of equiaxed grain, a grain growth is restrained and has low dislocation density after the large deformation; therefore it is considered that W-Re compact shows superplasticity.

  • PDF

Grain Size Determination of Copper Film by Electron Backscatter Diffraction (EBSD를 이용한 구리박막의 결정립 크기 결정)

  • Kim, Su-Hyeon;Kang, Joo-Hee;Han, Seung Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.847-855
    • /
    • 2010
  • The grain size of a cross-section of $8{\mu}m$-thick copper film was determined by electron backscatter diffraction analysis. Grain size distribution histogram showed the presence of a large fraction of small-sized grains, and the mean grain size was significantly affected by handling of them. A cut-off grain size, below which all grains are ignored as noise and eliminated for the calculation of the mean value, should be three or four times as large as the step size. Due to the presence of small grains, the linear intercept method derived larger mean grain size, which depends less sensitively on the cut-off grain size than the equivalent circle diameter method.