• Title/Summary/Keyword: Grafting efficiency

Search Result 66, Processing Time 0.021 seconds

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Production of Virus-Free Stocks from Citrus Plant by the Shoot-Tip Grafting and Heat Treatment (열처리와 Shoot-Tip Grafting에 의한 감귤 바이러스 무독묘 생산)

  • Kim Daehyun;Shim Hyekyung;Kwon Hyeogmo;Hyun Jaewook;Kim Kwangsik;Lee Jinkyung;Lee Sukchan
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • Virus-free stocks was produced by the combination of the heat treatment of virus infected plant and shoot-tip grafting (STS). To produce virus-free stocks, the plants infected with citrus viruses were used for virus-free stock production using the modified method of STG in thermotherapy at $40^{\circ}C$ for 16 hours in the light, and at $30^{\circ}C$ for 8 hours of darkness for 4 weeks. Trifoliate orange (P. trifoliata) were used as rootstock seedling for STG. Percentages of virus-free stocks against citrus tristeza virus (CTV), satsuma dwarf virus (SDV) and citrus tatter leaf virus (CTLV) were $75.7\%,\;100.0,\%\;82.6\%$ respectively. Shoot tip size for successful STG were as small as possible. Less than $0.3\;\cal{mm}$ of shoot tips gave the hight efficiency of virus free plants but survival rates were low. And, survival rate after shoot-tip culture was analyzed and the rates were dependant on the cultivars; Yuzu cultivar showed the hight survival rate ($74.6\%$) and early satsuma mandarin (Iwasagi) was $13.3\%$ as the lowest cultivar. But citrus trees were not succeed to grown, turned brown, and died.

Study on Graft Polymerization of Acrylate and Methacrylate Monomers onto the Carbon Black Surface (Carbon Black 표면에의 아크릴레이트 및 메타크릴레이트의 그라프트 중합에 관한 연구)

  • Goo, Hyung-Seo;Chang, Byung-Kwon;Kim, Yong-Moo;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.395-405
    • /
    • 1994
  • The various functional groups, such as hydroxyl(-OH), carboxyl(-COOH) and quinonic oxygen(OC<) on the carbon black(abbreviated to CB) surface were activated with n-butyl lithium solution in n-hexane and then acrylate and methacrylate monomers were graft polymerized onto these activated anionic sites and CB-grafted polymers were obtained. To separate homopolymers from reaction mixture, non-solvent precipitation method or centrifugal separating method were applied. Subsequently, conversion, grafting ratio and efficiency were determined at various reaction temperatures and times. In case of acrylates, the grafting ratio showed 20~30% but methacrylates showed 150~200%. Also the anion polymerizations between CB and monomers were nearly reached to equilibrium state within one or two hours under each reaction temperatures but conversion and grafting ratio were increased a little with reaction temperature increase. In colloidal dispersion stability test, before heat-drying, the all CB-grafted polymers showed good dispersed stability in good solvents for acrylic and methacrylic homopolymers. Futhermore, CB-polymethacrylates were found to show excellent collidal properties for good solvents of methacrylic homopolymer even after heat-drying. Identification of the grafted polyacrylates and polymethacrylates onto the CB surface was performed by FT-IR spectroscopy. In addition, electric resistance values of CB-grafted polymers were measured by Four-probe method, and the increase of the grafting ratio showed the increase of the surface resistance.

  • PDF

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution

  • Hejri, Zahra;Hejri, Mehri;Omidvar, Maryam;Morshedi, Sadjad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • In order to develop a new adsorbent for removal of formaldehyde from aqueous solution, surface modification of TiO2 nanoparticles was performed with 2,4-Dinitrophenylhydrazine (DNPH) that have a strong affinity to the formaldehyde. Sodium dodecyl sulfate (SDS) surfactant was used to improve the DNPH grafting to TiO2 surface. Modified adsorbents were characterized by SEM, TEM, XRD, EDX and FTIR. Since the COD level in wastewaters including formaldehyde is considerable, it is necessary to determine the COD content of the synthetic wastewater. In order to determine the optimal removal conditions, the effect of contact time (60-210 min), pH (4-10) and adsorbent dosage (0.5-1.5 g/L) on adsorption and COD removal efficiencies were studied, using response surface method. EDX and FTIR analysis confirmed the presence of nitrogen-containing functional groups on the modified TiO2 surface. The maximum formaldehyde adsorption and COD removal efficiencies by modified TiO2 were about 15.65 and 7.35% higher than the unmodified nanoparticles respectively. Therefore, the grafting of nano-TiO2 with DNPH would greatly improve its formaldehyde adsorption efficiency. The optimum conditions determined for a maximum formaldehyde removal of 99.904% and a COD reduction of 94.815% by TiO2/SDS/DNPH nanocomposites were: adsorbent dosage 1.100 g/L, pH 7.424 and the contact time 183.290 min.

Emulsion Graft Copolymerization of Methyl Methacrylate onto Cotton Fiber (면섬유에 대한 Methyl Methacrylate의 유화 그라프트 중합)

  • Bae Hyun-Sook;Ryu Hyo-Seon;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.3 s.39
    • /
    • pp.271-280
    • /
    • 1991
  • Emulsion graft copolymerization of MMA onto cotton fiber using Ce(IV) salt as an initiator was carried out. Graft yield and graft efficiency were observed according to the kinds and concentrations of emulsifier and polymerization conditions. The physical properties of MMA grafted cotton fabric were investigated. The results of this study were as follows: 1. The heighest graft yield of emulsion graft polymerization occurred at the concentration below cmc of emulsifier, which was different from emulsion polymerization. Nonionic sur- factant as an emulsifier was more effective than anionic one. 2. The highest graft yield was obtained at the initiator concentration $1{\times}10^{-2}mol/l$. The viscometric molecular weight of PMMA was in the order of 106. 3. As reaction time increased, the graft yield increased but the graft efficiency decreased. 4. Elevation of reaction temperature resulted in increase of graft yield. The apparent activation energy of MMA graft polymerization was 4.72 Kcal/mol. 5. Physical properties of MMA grafted cotton fabric varied with increase of grafting. Thickness and stiffness showed a noticeable increase, whereas tensile strength and elongation was slightly increased. Crease recovery increased as the graft yield increase up to $50\%$ and decreased thereafter.

  • PDF

Preparation and Characterization of Modified Natural Rubber Applied to Seismic Isolation Damper Rubber

  • Seong-Guk Bae;Woong Kim;Yu mi Yun;Jin Hyok Lee;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.128-135
    • /
    • 2023
  • To improve the adhesive strength of natural rubber (NR) for a seismic isolation damper, citraconic acid-g-NR (CCA-g-NR) was synthesized via the melt grafting of citraconic acid (CCA) onto NR using an azobisisnomerobutyronitrile (AIBN) initiator. Subsequently, the influence of CCA and AIBN concentrations on the graft ratio G/R (%) and graft efficiency G/E (%) of the CCA-g-NR was investigated. The optimum CCA and AIBN concentrations required to achieve the desired G/R (3.49%) and G/E (49.8%) were found to be 7 phr and 0.13 phr, respectively. Additionally, we studied the influence of CCA-g-NR concentration on the mechanical properties (tensile strength, elongation at break, and modulus at 300%), adhesive strength, and cure characteristics of the rubber compound in the seismic isolation damper. As the concentration of CCA-g-NR increased, the elongation at break and adhesive strength of the compound increased, whereas its tensile strength and modulus at 300% decreased. Moreover, as the concentration increased, the maximum torque decreased and the scorch time was delayed to obtain an optimal vulcanization time.

Synthesis and Thermal Properties of Acrylonitrile-CR-Methyl Methacrylate(ACM) Graft Copolymer (아크릴로니트릴-CR-메틸 메타아크릴레이트 그라프트 공중합체의 합성과 열적 성질)

  • Choi, Sung-Kuen;Ha, Chang-Sik;Huh, Dong-Sub;Cho, Won-Jei
    • Elastomers and Composites
    • /
    • v.24 no.4
    • /
    • pp.265-275
    • /
    • 1989
  • The graft copolymerizations of acrylonitrile (AN) and methyl methacrylate (MMA) onto chloroprene rubber (CR) were carried out with benzoyl peroxide(BPO) as an initiator. The effect of solvent, mole ratio of AN to MMA, reaction time and temperature, and initiator concentration on graft copolymerization were examined. It was observed that the grafting efficiency increased as increasing mole ratio of AN to MMA. the graft copolymer, acrylonitrile- CR-methyl methacrylate (ACM), was identified by infrared spectroscopy and morphology. Thermal stability of ACM was found to be improved when compared with those of CR.

  • PDF

Durable Press Finish of Cotton via Dual Curing Using UV Light and Heat

  • Jang, Jinho;Yoon, Ki-Cheol;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.184-189
    • /
    • 2001
  • Continuous photografting/crosslinking of polyethyleneglycol dimethacrylate oligomers onto cotton using a water-soluble benzophenone photoinitiator was investigated. Photografting increased with increasing irradiation dose, oligomer concentration and photoinitiator concentration. Maximum grafting efficiency of DM 400 and 600 were 83% and 79%, respectively. the photografting increased the wrinkle resistance of cotton implying surface crosslinking of cotton. bothsurface crosslinking and bulk crosslinking of cotton were accomplished via dual curing of a mixed formulation containing both a thermally curable component (BTCCA/SHP) and a UV-curable component. The wrinkle resistance of the crosslinked cotton was found to be higher when cured by thermal curing due to the facile post-polymerization of the UV active component. The presence of crosslinks in the dually crosslinked cotton was verified with FT-IR and thermogravimetric analysis.

  • PDF

Study of Enhancing Dye Affinity of Fabric using Microwave

  • Kim, Ji-Hyun;Choi, In-Ryu
    • The International Journal of Costume Culture
    • /
    • v.13 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Of all the ways that energy is consumed within textile industry, few are as high energy-expending as dyeing process. The energy consumption in dyeing process amounts to 77% of total fuel consumption, 54% of total electricity use. A technical development in terms of efficient saving energy and time as well is required in the process of dyeing textiles. Recently, dyeing experts are investigating new technologies can conserve energy grafting into microwaves, radio waves, infrared lights, etc. Dyeing industry in Korea, however, the research related to energy conservation has been rarely conducted. Accordingly, this study aims to examine the possibility where especially microwaves could be applied to reduce the energy use and enhance dyeing process skill. This study performs the experiment in which microwave is employed as heating condition in dyeing and figures out as color yield being promoted, bathochromic effect would be achieved. Applying microwaves in dyeing process is expected to lower the carbon emission, energy and time wasted, ultimately exalt economic efficiency.

  • PDF