• Title/Summary/Keyword: Gradient elution

Search Result 250, Processing Time 0.021 seconds

Simultaneous Determination and Optimization Ultrasound-Assisted Extraction of Poncirin and Naringin in Poncirus trifoliata Rafinesqul (지실의 Poncirin, Naringin의 동시분석법 확립과 초음파 추출법 최적화)

  • Lee, Ah Reum;Jang, Seol;Lee, A Yeong;Choi, Goya;Kim, Hyo Seon;Kim, Ho Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The Ponciri fructus immaturus (Poncirus trifoliata Rafinesque) has been used in oriental medicine for uterine contraction, stomachache, abdominal distension and cardiovascular diseases. Two main compounds, poncirin and naringin were successfully analyzed by high performance liquid chromatography (HPLC) and carried out method validation according to ICH guideline. A successful resolution and retention times were obtained with a $C_{18}$ reversed phase column, at an $1m{\ell}min^{-1}$ flow rate, with a gradient elution of a mixture of methanol, water and acetonitrile. Poncirin and naringin showed good linearity ($R^2$ > 0.999) in relatively wide concentration ranged. The recovery of each compound was 95.81 ~ 101.48% with R.S.D. values less than 1.0%. The application of ultrasound-assisted extraction was shown to be more efficient in extracting poncirin and naringin from Ponciri fructus immaturus. The predicted optimal poncirin and naringin yield were poncirin 2.15%, naringin 1.65% under an extraction temperature of $40^{\circ}C$, an extraction time of 10 min in a solvent of 70% methanol.

Quantitative Analysis and Varietal Difference of Cyanidin 3-glucoside in Pigmented Rice

  • Park, Sun-Zik;Lee, Jong-Hoon;Han, Sang-Jun;Kim, Hong-Yeol;Ryu, Su-Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.179-183
    • /
    • 1998
  • The cyanidin 3-glucoside (C3G) extracted from pigmented rice seeds in 0.5% TFA (Trifluoro acetic acid) -95% ethanol was separated by High Performance Liquid Chromatography (HPLC). A HPLC system using a Develosil ODS-5 column and 0.1 % TFA-$H_2O$~0.1 % TFA-$CH_3CN$ gradient elution was selected for separation and quantitative determination of C3G. Regression equation obtained for the standard content of C3G pigment was as Y=21.95293$^*$X-14.726771 (r=0.99$^{**}$). Using this method, 326 domestic and introduced collections were evaluated for the C3G content. The Korean bred cultivar 'Heugjinjubyeo', showed highest C3G content (552 mg/100g seed) among the tested cultivars. Among the pigmented rice cultivars ten cultivars were selected for containing a high content of C3G. The content of C3G per 100g seeds was in high order as follows: Heugjinjubyeo (552mg)>Cheng Chang (321mg)>Kilimgeugmi (240mg)>PI160979-2 (224mg)>Hong Shei Lo (221mg)>Heugnambyeo (191 mg)>Mitak =PIl60979-1 (186mg)>Suwon425 (163mg)>Sanghaehyanghyeolla (108mg). The C3G pigment was not detected in the common white rice cultivars.

  • PDF

Qualitative Analysis of the Major Constituents in Traditional Oriental Prescription Bang-poong-tong-sung-san by Liquid Chromatography/Ultraviolet Detector/Ion-Trap Time-of-Flight Mass Spectrometry

  • Eom, Han Young;Kim, Hyung-Seung;Han, Sang Beom
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • An advanced and reliable high performance liquid chromatography (HPLC)/ultraviolet detector (UV)/ion-trap time-of-flight (IT-TOF) mass spectrometry was developed for the simultaneous quantification of 19 marker compounds in Bang-poong-tong-sung-san (BPTS), a traditional oriental prescription. Various parameters affecting HPLC separation and IT-TOF detection were investigated, and optimized conditions were identified. The separation was achieved on a Capcell PAK C18 column ($1.5mm{\times}250mm$, $5{\mu}m$ particle size) using a gradient elution of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.1 mL/min. The column temperature was maintained at $40^{\circ}C$ and the injection volume was $2{\mu}L$. IT-TOF system was equipped with an electrospray ion source (ESI) operating in positive or negative ion mode. The optimized electrospray ionization parameters were as follows: ion spray voltage, +4.5 kV (positive ion mode), or -3.5 kV (negative ion mode); drying gas ($N_2$), 1.5 L/min; heat block temperature, $200^{\circ}C$. Automatic $MS^n$ (n = 1~3) analyses were carried out to obtain structural information of analytes. Elemental compositions and their mass errors were calculated based on their accurate masses obtained from a formula predictor software. The marker compounds in BPTS were identified by comparisons between $MS^n$ spectra from standards and those from extracts. Moreover, the libraries of $MS^2$ and $MS^3$ spectra and accurate masses of parent and fragment ions for marker compounds were constructed. The developed method was successfully applied to the BPTS extracts and identified 17 out of 19 marker compounds in the BPTS extracts.

Quantitative Analysis of the Eleven Marker Components in Traditional Korean Formula, Jakyakgamcho-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry (UPLC-MS/MS를 이용한 작약감초탕 물 추출물 중 11종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.64-72
    • /
    • 2016
  • Jakyakgamcho-tang is a well-known traditional herbal medicine and has been used for the treatment of mainly pains in oriental medicine. In this study, analytical method for the quantitative determination of the eleven marker components, gallic acid (1), oxypaeoniflorin (2), paeoniflorin (3), albiflorin (4), liquiritin (5), isoliquiritin (6), ononin (7), liquiritigenin (8), benzoylpaeoniflorin (9), paeonol (10), and glycyrrhizin (11) in Jakyakgamcho-tang decoction was performed using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The analytical column for separation of the compounds 1~11 was used an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) aqueous formic acid (A) and acetonitrile (B) by gradient elution. The flow rate was 0.3 ml/min and injection volume was $2.0{\mu}l$. Correlation coefficient in the calibration curves of the compounds 1~11 were showed a good linearity with more than 0.99. The limit of detection and limit of quantification values of the compounds 1~13 were detected in the ranges 0.06~18.43 ng/ml and 0.18~58.29 ng/ml, respectively. Among the compounds 1~11, the compounds 10 were not detected in this sample, while the ten compounds, 1~9 and 11, were detected $44.05{\sim}19,289.05{\mu}g/g$ in Jakyakgamcho-tang extract.

Simultaneous Analysis of Bioactive Metabolites from Caulis Lonicera japonica by HPLC-DAD-ion trap-MS (HPLC-DAD-ion trap-MS를 이용한 인동 생리활성 물질의 동시분석)

  • Ryu, Sung-Kwang;Won, Tae-Hyung;Kang, Sam-Sik;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2010
  • A high-performance liquid chromatography (HPLC) with DAD detector and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of coniferin (1), loganic acid (2), demethylsecologanol (3), sweroside (4) and loganin (5) from caulis Lonicera joponica. The optimal chromatographic conditions were obtained on an ODS column ($5{\mu}m$, $4.6{\times}150mm$) with the column temperature $35^{\circ}C$. The mobile phase was composed of (A) water with 0.1% formic acid and (B) methanol with 0.1% formic acid using a gradient elution, the flow rate was 0.3 ml/min. Detection wavelength was set at 254 nm. All calibration curves showed good linear regression ($r^2$>0.998) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and interday variations of 0.16~3.28% and 0.14~1.99%, respectively, and the overall recoveries of 99.39~105.89% for the five compounds analyzed. The verified method was successfully applied to quantitative determination of the two types (phenolic compounds and iridoids) of bioactive compounds in 24 commercial caulis L. japonica samples from different markets in Korea and China. The analytical results demonstrated that the contents of the five analytes vary significantly with sources.

Simultaneous Determination of Baicalein, Baicalin, Wogonin, and Wogonoside in Rat Plasma by LC-MS/MS for Studying the Pharmacokinetics of the Standardized Extract of Scutellariae Radix

  • Chung, Hye-Jin;Lim, Sun-Young;Kim, In-Sook;Bu, Young-Min;Kim, Ho-Cheol;Kim, Dong-Hyun;Yoo, Hye-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.177-182
    • /
    • 2012
  • A new composition of standardized Scutellariae Radix extract (HPO12) was developed for treatment of Alzheimer's disease. For the preclinical pharmacokinetic study of HPO12, a rapid, sensitive, and selective LCMS/MS method was developed and validated for the simultaneous determination of 4 bioactive compounds, baicalein, baicalin, wogonin, and wogonoside. After extraction with ethylacetate, chromatographic analysis was performed on a Thermo $C_{18}$ column ($150mm{\times}2.1mm$, $3{\mu}m$) with a mobile phase consisting of 0.1% formic acid (A) and 0.1% formic acid in 95% acetonitrile (B) by using gradient elution at a flow rate of $250{\mu}L/min$. Analytes introduced to a mass spectrometer were monitored by multiple reaction monitoring (MRM) in positive ion mode. Using $25{\mu}L$ of plasma sample, the method was validated over the following concentration ranges: 25-5000 ng/mL for baicalein, 20-40000 ng/mL for baicalin, 1-1000 ng/mL for wogonin, and 5-10000 ng/mL for wogonoside. The intra- and inter-day precision and accuracy of the quality control samples at the 4 concentrations showed $\leq$ 13.7% relative standard deviation (RSD) and 86.6-105.5% accuracy. The method was successfully applied to determine the concentrations of baicalein, baicalin, wogonin, and wogonoside in rat plasma after intraperitoneal and oral administrations of HPO12.

Quality Evaluation of Moutan Cortex Radicis Using Multiple Component Analysisby High Performance Liquid Chromatography

  • Ding, Yan;Wu, Enqi;Chen, Jianbo;Nguyen, Huu-Tung;Do, Thi-Ha;Park, Kyung-Lae;Bae, Ki-Hwan;Kim, Young-Ho;Kang, Jong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2240-2244
    • /
    • 2009
  • A simple high performance liquid chromatographic method was developed to evaluate the quality of Moutan Cortex Radicis based on chromatographic fingerprints that characterize eight pharmacological compounds, namely, gallic acid, paeoniflorin, galloyl paeoniflorin, benzoic acid, quercetin, benzoylpaeoniflorin, paeoniflorigenone, and paeonol. These compounds were identified by their characteristic UV profiles and the mass spectroscopy data, and their contents were determined by HPLC. The chromatographic separation was performed on a $C_{18}$ column by gradient elution with 0.05% formic acid in water and acetonitrile. The methodological validation gave acceptable linearities (r = 0.9996) and recoveries (ranging from 99.4∼103.1%). The limits of detection (LOD) of these compounds ranged from 10 to 30 $\mu$g/mL. The representative chromatographic fingerprints of Moutan Cortex Radicis were obtained by analyzing 20 batches of samples collected from markets in Korea and China. For the efficient evaluation of quality for the commercial Moutan Cortex Radicis it is recommended that the total content of the six characteristic compounds should contain more than a minimum of 2% and that the content of total paeoniflorin and paeonol should exceed a minimum of 1.5% of dry weight of Moutan Cortex Radicis.

Pentafluorophenylprophyl Ligand-based Liquid Chromatography-Tandem Mass Spectrometric Method for Rapid and Reproducible Determination of Metformin in Human Plasma

  • Yang, Jeong Soo;Oh, Hyeon Ju;Jung, Jin Ah;Kim, Jung-Ryul;Kim, Tae-Eun;Ko, Jae-Wook;Lee, Soo-Youn;Huh, Wooseong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3284-3288
    • /
    • 2013
  • This paper describes first development and validation of pentafluorophenylprophyl ligand-based liquid chromatography coupled to tandem mass spectrometry (PFPLC-MS/MS) method to determine metformin, a highly polar compound, in human plasma. Metformin and Phenformin (internal standard) were extracted from human plasma 50 ${\mu}L$ with a single-step protein precipitation. The chromatographic separation was performed using a linear gradient elution of mobile phase involving 5.0 mM ammonium formate solution with 0.1% formic acid (A) and acetonitrile (B) over 3.0 min of run time on a Phenomenex Luna PFP column. The detection was performed using a triple-quadrupole tandem mass spectrometer (Waters Quattro micro) with electrospray ionization in the mode of positive ionization and multiple-reaction monitoring (MRM). The developed method was validated with 5.0 ng/mL of lower limit of quantification (LLOQ). The calibration curve was linear over 5-3000 ng/mL of the concentration range ($R^2$ > 0.99). The specificity, selectivity, carry-over effect, precision, accuracy and stability of the method met the acceptance criteria. The method developed in this study had had rapidness, simplicity and ruggedness. The reliable method was successfully applied to high throughput analysis of real samples for a practical purpose of a pharmacokinetic study.

Rapid separation and identification of 31 major saponins in Shizhu ginseng by ultra-high performance liquid chromatography-electron spray ionization-MS/MS

  • Sun, Ting-Ting;Liang, Xin-Lei;Zhu, He-Yun;Peng, Xu-Ling;Guo, Xing-Jie;Zhao, Long-Shan
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.220-228
    • /
    • 2016
  • Background: Among the various ginseng strains, Shizhu ginseng is endemic to China, mainly distributed in Kuandian Manchu Autonomous County (Liaoning Province, China); however, not much is known about the compounds (especially saponins) in Shizhu ginseng. Methods: A rapid, sensitive, and reliable ultra-high performance liquid chromatography coupled with MS/MS (UHPLC-MS/MS) method was developed to separate and identify saponins in Shizhu ginseng. Results: The separation was carried out on a Waters ACQUITY UPLC BEH $C_{18}$ column ($100mm{\times}2.1mm$, $1.7{\mu}m$) with acetonitrile and 0.1% formic acid aqueous solution as the mobile phase under a gradient elution at $40^{\circ}C$. The detection was performed on a Micromass Quattro Micro API mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 31 saponins were identified or tentatively characterized by comparing retention time and MS data with related literatures and reference substances. Conclusion: The developed UHPLC-MS/MS method was suitable for identifying and characterizing the chemical constituents in Shizhu ginseng, which provided a helpful chemical basis for further research on Shizhu ginseng.

Simultaneous quantification of six nonpolar ginsenosides in white ginseng by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection

  • Song, Hyeyoung;Song, Kyung-Won;Hong, Seon-Pyo
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.563-569
    • /
    • 2020
  • Background: White ginseng consists of the roots and rhizomes of the Panax species, and red ginseng is made by steaming and drying white ginseng. While red ginseng has both polar and nonpolar ginsenosides, previous studies showed white ginseng to have only polar ginsenosides. Because nonpolar ginsenosides are formed through the manufacture of red ginseng from white ginseng, researchers have generally thought that nonpolar ginsenosides do not exist in white ginseng. Methods: We developed a simultaneous quantitative method for six nonpolar ginsenosides in white ginseng using reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection. The nonpolar ginsenosides of white ginseng were extracted for 4 h under reflux with 50% methanol. Results: Using the gradient elution system, all target components were completely separated within 50 min. Nonpolar ginsenosides were determined in the rhizome head (RH), main root (MR), lateral root, and hairy root (HR) of 6-year-old white ginseng samples obtained from several regions (Geumsan, Punggi, and Kanghwa). The total content in the HR of white ginseng was 37.8-56.8% of that in the HR of red ginseng. The total content in the MR of white ginseng was 5.9-24.3% of that in the MR of red ginseng. In addition, the total content in the RH of white ginseng was 28.5-35.8% of that in the HR of red ginseng Conclusion: It was confirmed that nonpolar ginsenosides known to be specific components of red ginseng were present at substantial concentrations in the HR or RH of white ginseng.