• Title/Summary/Keyword: Gradient echo EPI

Search Result 31, Processing Time 0.034 seconds

Dynamics regression analysis techniques for sensory and pain stimulation: fMRI study

  • 박태석;한재용;이수열
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.31-31
    • /
    • 2003
  • 목적: 통증에 대한 fMRI 연구에 있어서 differential-regression-analysis (DRA) 기법을 사용하여 대뇌 피질에서 통증 처리에 관련된 영역의 순시적인 변화를 관찰하였다. 대상 및 방법: 우선 통증과 일반적인 감각자극과의 생리학적 차이를 밝히기 위해 운동 (finger tapping) 및 시각 (flickering light) 자극 실험이 선행되었다. 통증 유발을 위해서는 50C에서 52C의 뜨거운 물을 이용한 온도자극이 왼손의 검지와 중지에 30초 동안 가해졌다. fMRI 실험은 Marconi (Philips) 1.5 T scanner를 이용하여 gradient echo EPI sequence(TR / TE / FA = 3 sec / 35 msec / 90)로 수행되었다. 감각자극과 통증자극에 대한 반응의 동적인 변화를 관찰하기 위하여 fMRI 결과 분석에 기존의 box-car function과 DRA 기법이 사용되었다.

  • PDF

Quantification of Cerebral Blood Flow Measurements by Magnetic Resonance Imaging Bolus Tracking

  • Park Byung-Rae
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Three different deconvolution techniques for quantifying cerebral blood flow (CBF) from whole brain $T2^{\ast}-weighted$ bolus tracking images were implemented (parametric Fourier transform P-FT, parametric single value decomposition P-SVD and nonparametric single value decomposition NP-SVD). The techniques were tested on 206 regions from 38 hyperacute stroke patients. In the P-FT and P-SVD techniques, the tissue and arterial concentration time curves were fit to a gamma variate function and the resulting CBF values correlated very well $(CBF_{P-FT}\;=\;1.02{\cdot}CBF_{p-SVD},\;r^2\;=\;0.96)$. The NP-SVD CBF values correlated well with the P-FT CBF values only when a sufficient number of time series volumes were acquired to minimize tracer time curve truncation $(CBF_{P-FT}\;=\;0.92{\cdot}CBF_{NP-SVD},\;r^2\;=\;0.88)$. The correlation between the fitted CBV and the unfitted CBV values was also maximized in regions with minimal tracer time curve truncation $(CBV_{fit}\;=\;1.00{\cdot}CBV_{ Unfit},\;^r^2\;=\;0.89)$. When a sufficient number of time series volumes could not be acquired (due to scanner limitations) to avoid tracer time curve truncation, the P-FT and P-SVD techniques gave more reliable estimates of CBF than the NP-SVD technique.

  • PDF

Development of 1.0 Tesla Compact MRI System (1.0 Tesla 자기 공명 진단 장치의 개발)

  • Lee, H.K.;Oh, C.H.;Ahn, C.B.;Chang, Y.H.;Shin, D.W.;Lee, K.N.;Jang, K.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.129-134
    • /
    • 1996
  • 1차 년도 G-7 개발 과제로 수행된 자기 공명 진단 장치 (Magnetic Resonance Imaging System)의 개발 내용을 간략히 소개하였다. 성공적인 IT Compact 자기 공명 진단 장치의 완성을 위해 일차적으로 (1)RF (고주파), Gradient(경사 자계), Spectrometer 등의 Hard-ware 관련 MRI 핵심부분, (2) RF, Gradient, Spectrometer, Magnet 등의 각 Sub-system을 연결, 조합, 조정하여 하나의 체계적인 시스템으로 통합하고 운영하는 과정(System Integration), (3)사용자와 시스템을 연결하는 User Interface, Data Base Management, Real time 운영 SW 등과 (4)임상에 적용하여 구체적인 성능과 효용성을 확인하는 기술 등에 대하여 집중 연구하였다. 개발 방법은 (1)지난 16년간 국내에 축적 된 연구 개발 인력들을 최대한 활용하고 (2)연구 개발을 국제화 시켜 필요한 경우 부분별로 개발 인력을 해외에서 보완하고 (3)소수 정예 전문 인력 주의와 요소 기술 또는 중요 부품을 경쟁성 검토 후 필요 시 Out-sourcing 활용으로 최저의 비용으로 개발 기간을 최소화 하는 데 두었다. 개발된 1.0Tesla자기 공명 영상 장치는 미국 물리 학회에서 규격화한 Phantom및 임상 적용을 통하여 서울대 의대 연구 팀과 지속적으로 성능을 평가해 왔다. 개발된 시스템의 해상도는 $256{\times}256$ head 영상에서 1mm 이 하의 해상도를 가짐을 resolution phantom 을 통하여 확인할 수 있었고, $512{\times}512$ 영상에서 는 약 0.5 mm 의 물체를 분리 해냄으로써 외제 시스템들 보다 우수하게 평가 되었다. 차폐 경사코일의 Eddy current영향은2%이내로 촬영 시 영향은 거의 무시할 수 있었다. 또한, 개발된 영상 기법들, 즉 Multislice/Multi Echo, Oblique angle imaging, 64 Echo train을 갖는 고속 촬영 기술들이 자기 공명 장치에 장착되어 임상 적용에 문제가 없도록 하였다. 또한 20mT/m/Amp의 강력한 능동 차폐 경사 자계 코일(Active Shield Gradient Coil)을 기본 사양으로 하고, 수신단을 최대 6개로 확장토록 하여 2차년도의 초고속 촬영 기법(EPI) 및 Phased Array 코일 촬영이 가능토록 하였다. 1차 년도 개발 과제 수행 결과와 향후 개발 과제를 바탕으로 최종 목표인 국제 경쟁력이 있는 자기 공명 진단 장치 즉 기능과 영상의 질은 선진국 제품과 동일하거나 우수하되, 저가격을 구현한 상용화 제품이 완성되어, 첨단 의료기기로서 산업 구조 고도화에 기여하고 수입대체 뿐만 아니 라 수출을 통한 국익 창출과 국가의 기술을 통한 위상 제고에 기여되길 기대한다.

  • PDF

The Feasibility of Event-Related Functional Magnetic Resonance Imaging of Power Hand Grip Task for Studying the Motor System in Normal Volunteers; Comparison with Finger Tapping Task

  • Song, In-Chan;Chang, Kee-Hyun;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.111-111
    • /
    • 2001
  • 목적: To evaluate the feasibility of the event-related functional MR study using power grip studying the hand motor system 대상 및 방법: Event-related functional MRI was performed on a 1.5T MR unit in seven norm volunteers (man=7, right-handedness=2, left-handedness=5, mean age: 25 years). A single-shot GRE-EPI sequence (TR/TE/flip angle: 1000ms/40ms/90, FOV = 240 mm matrix= 64$\times$64, slice thickness/gap = 5mm/0mm, 7 true axial slices) was used for functiona MR images. A flow-sensitive conventional gradient echo sequence (TR/TE/flip angl 50ms/4ms/60) was used for high-resolution anatomical images. To minimize the gross hea motion, neck-holders (MJ-200, USA) were used. A series of MR images were obtained in axial planes covering motor areas. To exclude motion-corrupted images, all MR images wer surveyed in a movie procedure and evaluated using the estimation of center of mass of ima signal intensities. Power grip task consisted of the powerful grip of all right fingers and hand movement ta used very fast right finger tapping at a speed of 3 per 1 second. All tasks were visual-guid by LCD projector (SHARP, Japan). Two tasks consisted of 134 phases including 7 activatio and 8 rest periods. Active stimulations were performed during 2 seconds and rest period were 15 seconds and total scan time per one task was 2 min 14 sec. Statistical maps we obtained using cross-correlation method. Reference vector was time-shifted by 4 seconds an Gaussian convolution with a FWHM of 4 seconds was applied to it. The threshold in p val for the activation sites was set to be 0.001. All mapping procedures were peformed usin homemade program an IDL (Research Systems Inc., USA) platform. We evaluated the activation patterns of the motor system of power grip compared to hand movement in t event-related functional MRI.

  • PDF

Cerebrocortical Regions Associated with Implicit and Explicit Memory Retrieval Under the Conceptual Processing: BOLD Functional MR Imaging

  • Kim, Hyung-Joong;Kang, Hyung-Geun;Seo, Jung-Jin;Jung, Kwang-Woo;Eun, Sung-Jong;Park, Jin-Kyun;Yoon, Woong;Park, Tae-Jin
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.111-111
    • /
    • 2002
  • Purpose: This study is to compare the distinct brain activation between implicit and explicit memory retrieval tasks using a non-invasive blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging(fMRI). Materials & Methods: We studied seven right-handed, healthy volunteers aged 21-25 years(mean;22 years) were scanned under a 1.5T Signa Horizon Echospeed MR imager(GE Medical Systems, Milwaukee, U.S.A.). During the implicit and explicit memory retrieval tasks of previously teamed words under the conceptual processing, we acquired fMRI data using gradient-echo EPI with 50ms TE, 3000ms TR, 26cm${\times}$26cm field-of-view, 128${\times}$128 matrix, and ten slices(6mm slice thickness, 1 mm gap) parallel to the AC-PC(anterior commissure and posterior commissure) line. By using the program of statistical parametric mapping(SPM99), functional activation maps were reconstructed and quantified.

  • PDF

Perfusion MR Imaging of the Brain Tumor: Preliminary Report (뇌종야의 관류 자기공명영상: 예비보고)

  • 김홍대;장기현;성수옥;한문희;한만청
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 1997
  • Purpose: To assess the utility of magnetic resonance(MR) cerebral blood volume (CBV) map in the evaluation of brain tumors. Materials and Methods: We performed perfusion MR imaing preoperatively in the consecutive IS patients with intracranial masses(3 meningiomas, 2 glioblastoma multiformes, 3 low grade gliomas, 1 lymphoma, 1 germinoma, 1 neurocytoma, 1 metastasis, 2 abscesses, 1 radionecrosis). The average age of the patients was 42 years (22yr -68yr), composed of 10 males and S females. All MR images were obtained at l.ST imager(Signa, CE Medical Systems, Milwaukee, Wisconsin). The regional CBV map was obtained on the theoretical basis of susceptibility difference induced by first pass circulation of contrast media. (contrast media: IScc of gadopentate dimeglumine, about 2ml/sec by hand, starting at 10 second after first baseline scan). For each patient, a total of 480 images (6 slices, 80 images/slice in 160 sec) were obtained by using gradient echo(CE) single shot echo-planar image(EPI) sequence (TR 2000ms, TE SOms, flip angle $90^{\circ}$, FOV $240{\times}240mm,{\;}matrix{\;}128{\times}128$, slice-thick/gap S/2.S). After data collection, the raw data were transferred to CE workstation and rCBV maps were generated from the numerical integration of ${\Delta}R2^{*} on a voxel by voxel basis, with home made software (${\Delta}R2^{*}=-ln (S/SO)/TE). For easy visual interpretation, relative RCB color coding with reference to the normal white matter was applied and color rCBV maps were obtained. The findings of perfusion MR image were retrospectively correlated with Cd-enhanced images with focus on the degree and extent of perfusion and contrast enhancement. Results: Two cases of glioblastoma multiforme with rim enhancement on Cd-enhanced Tl weighted image showed increased perfusion in the peripheral rim and decreased perfusion in the central necrosis portion. The low grade gliomas appeared as a low perfusion area with poorly defined margin. In 2 cases of brain abscess, the degree of perfusion was similar to that of the normal white matter in the peripheral enhancing rim and was low in the central portion. All meningiomas showed diffuse homogeneous increased perfusion of moderate or high degree. One each of lymphoma and germinoma showed homogenously decreased perfusion with well defined margin. The central neurocytoma showed multifocal increased perfusion areas of moderate or high degree. A few nodules of the multiple metastasis showed increased perfusion of moderate degree. One radionecrosis revealed multiple foci of increased perfusion within the area of decreased perfusion. Conclusion: The rCBV map appears to correlate well with the perfusion state of brain tumor, and may be helpful in discrimination between low grade and high grade gliomas. The further study is needed to clarify the role of perfusion MR image in the evaluation of brain tumor.

  • PDF

Functional-Magnetic Resonance Imaging and Transcranial Magnetic Stimulation in a Case of Schizencephaly (뇌열 1예의 기능적 자기공명영상과 경두부 자기자극)

  • 변우목;한봉수;이재교;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Purpose : This study was to present the functional brain mapping of both functional magnetic resonance imaging(MRI) and transcranial magnetic stimulation(TMS) in a case of schizencephaly. Materials and methods : A 28-year-old man, who had left hemiplegia and schizencephaly in right cerebral hemisphere, was exacted with both functional MRI and TMS. Motor function of left hand was decreased whereas right hand was within normal limit. For functional MRI, gradient-echo echo planar imaging($TR/TE/{\alpha}$=1.2 sec/90 msec/90) was employed. The paradigm of motor task consisted of repetitive self-paseo hand flexion-extension exercises with 1-2 Hz periods. An image set of 10 slices was repetitively acquired with 15 seconds alternating periods of task performance and rest and total 6 cycles (three ON periods and three OFF periods) were performed. In brain mapping, TMS was performed with the round magnetic stimulator (mean diameter; 90mm). The magnetic stimulation was done with 80% of maximal output. The latency and amplitude of motor evoked potential(MEP)s were obtained from both abductor pollicis brevis(APB) muscles. Results : Functional MRI revealed activation of the left primary motor cortex with flexion-extension exercises of healthy right hand. On the other hand, the left primary motor cortex, left supplementary motor cortex, and left promoter areas were activated with flexion-extension exercises of left hand. In TMS, magnetic evoked potentials were induced in no areas of right cerebral hemisphere, but in 5 areas of left corebral hemisphere from both abductor pollicis brevis. Latency, amplitude, and contour of response of the magnetic evoked potentials in both hands were similar. Conclusion : Functional MRI and TMS in a patient with schizencephaly were successfully used to localize cortical motor function. Ipsilateral motor pathway is thought to be secondary to reinforcement of the corticospinal tract of the ipsilateral motor cortex.

  • PDF

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Neural correlations of familiar and Unfamiliar face recognition by using Event Related fMRI

  • Kim, Jeong-Seok;Jeun, Sin-Soo;Kim, Bum-Soo;Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.78-78
    • /
    • 2003
  • Purpose: This event related fMRI study was to further our understanding about how different brain regions could contribute to effective access of specific information stored in long term memory. This experiment has allowed us to determine the brain regions involved in recognition of familiar faces among non familiar faces. Materials and Methods: Twelve right handed normal, healthy volunteer adults participated in face recognition experiment. The paradigm consists of two 40 familiar faces, 40 unfamiliar faces and control base with scrambled faces in a randomized order, with null events. Volunteers were instructed to press on one of two possible buttons of a response box to indicate whether a face was familiar or not. Incorrect answers were ignored. A 1.5T MRI system(GMENS) was employed to evaluate brain activity by using blood oxygen level dependent (BOLD) contrast. Gradient Echo EPI sequence with TR/TE= 2250/40 msec was used for 17 contiguous axial slices of 7mm thickness, covering the whole brain volume (240mm Field of view, 64 ${\times}$ 64 in plane resolution). The acquired data were applied to SPM99 for the processing such as realignment, normalization, smoothing, statistical ANOVA and statistical preference. Results/Disscusion: The comparison of familiar faces vs unfamiliar faces yielded significant activations in the medial temporal regions, the occipito temporal regions and in frontal regions. These results suggest that when volunteers are asked to recognize familiar faces among unfamiliar faces they tend to activate several regions frequently involved in face perception. The medial temporal regions are also activated for familiar and unfamiliar faces. This interesting result suggests a contribution of this structure in the attempt to match perceived faces with pre existing semantic representations stored in long term memory.

  • PDF

Understanding on MR Perfusion Imaging Using First Pass Technique in Moyamoya Diseases (Moyamoya 질환에서 1차 통과기법을 이용한 자기공명관류영상의 이해)

  • Ryu, Young-Hwan;Goo, Eun-Hoe;Jung, Jae-Eun;Dong, Kyung-Rae;Choi, Sung-Hyun;Lee, Jae-Seung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • The purpose of this study was to investigated the usefulness of MR perfusion image comparing with SPECT image. A total of pediatric 30 patients(average age : 7.8) with Moyamoya disease were performed MR Perfusion with 32 channel body coil at 3T from March 01, 2010 to June 10, 2010. The MRI sequences and parameters were as followed : gradient Echo-planar imaging(EPI), TR/TE : 2000ms/50ms, FA : $90^{\circ}$, FOV : $240{\times}240$, Matrix : $128{\times}128$, Thickness : 5mm, Gap : 1.5mm. Images were obtained contrast agent administrated at a rate of 1mL/sec after scan start 10s with a total of slice 1000 images(50 phase/1 slice). It was measured with visual color image and digitize data using MRDx software(IDL version 6.2) and also, it was compared of measurement with values of normal and abnormal ratio to analyze hemodynamic change, and a comparison between perfusion MR with technique using Warm Color at SPECT examination. On MR perfusion examination, the color images from abnormal region to the red collar with rCBV(relative cerebral blood volume) and rCBF(relative cerebral blood flow) caused by increase cerebral blood flow with brain vascular occlusion in surrounding collateral circulation advancement, the blood speed relatively was depicted slowly with blue in MTT(Mean Transit Time) and TTP(Time to Peak) images. The region which was visible abnormally from MR perfusion examination visually were detected as comparison with the same SPECT examination region, would be able to confirm the identical results in MMD(Moyamoya disease)judgments. Hymo-dynamic change in MR perfusion examination produced by increase and delay cerebral blood flow. This change with digitize data and being color imaging makes enable to distinguish between normal and abnormal area. Relatively, MR perfusion examination compared with SPECT examination could bring an excellent image with spatial resolution without radiation expose.

  • PDF