• 제목/요약/키워드: Gradient descent combined with harmony search

검색결과 3건 처리시간 0.018초

지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.903-911
    • /
    • 2022
  • 물을 공급하기 위한 자원 중 하나인 지하수는 다양한 자연적 요인에 의해 수위의 변동이 발생한다. 최근, 인공신경망을 이용하여 지하수위의 변동을 예측하는 연구가 진행되었다. 기존에는 인공신경망 연산자 중 학습에 영향을 미치는 Optimizer로 경사하강법(Gradient Descent, GD) 기반 Optimizer를 사용하였다. GD 기반 Optimizer는 초기 상관관계 의존성과 해의 비교 및 저장 구조 부재의 단점이 존재한다. 본 연구는 GD 기반 Optimizer의 단점을 개선하기 위해 GD와 화음탐색법(Harmony Search, HS)를 결합한 새로운 Optimizer인 Gradient Descent combined with Harmony Search(GDHS)를 개발하였다. GDHS의 성능을 평가하기 위해 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용하여 이천율현 관측소의 지하수위를 학습 및 예측하였다. GD 및 GDHS를 사용한 MLP의 성능을 비교하기 위해 Mean Squared Error(MSE) 및 Mean Absolute Error(MAE)를 사용하였다. 학습결과를 비교하면, GDHS는 GD보다 MSE의 최대값, 최소값, 평균값 및 표준편차가 작았다. 예측결과를 비교하면, GDHS는 GD보다 모든 평가지표에서 오차가 작은 것으로 평가되었다.

대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제56권1호
    • /
    • pp.63-74
    • /
    • 2023
  • 높은 신뢰도의 댐 유입량 예측은 효율적인 댐 운영을 위해 필요하다. 최근 다층퍼셉트론(Multi Layer Perceptron, MLP)을 활용하여 댐의 유입량을 예측하는 연구들이 진행되었다. 기존 연구들은 MLP의 연산자 중 자료 간의 최적 상관관계를 찾는 optimizer로 경사하강법(Gradient Descent, GD) 기반의 optimizer를 사용하였다. 하지만, GD 기반의 optimizer들은 지역 최적값으로의 수렴 가능성과 저장공간 부재로 인해 예측성능이 저하된다는 단점이 있다. 본 연구는 GD 기반 optimizer 중 Adaptive moments와 Improved Harmony Search (IHS)를 결합한 Adaptive moments combined with Improved Harmony Search (AdamIHS)를 개발하여 GD 기반 optimizer의 단점을 개선하였다. AdamIHS를 사용한 MLP의 학습 및 예측성능을 평가하기 위해 대청댐 유입량을 학습 및 예측하였으며, GD 기반 optimizer를 사용한 MLP의 학습 및 예측성능과 비교하였다. 학습결과를 비교하면, AdamIHS를 사용한 은닉층 5개인 MLP의 Mean Squared Error (MSE) 평균값이 11,577로 가장 낮았다. 예측결과를 비교하면, AdamIHS를 사용한 은닉층 1개인 MLP의 MSE 평균값이 413,262로 가장 낮았다. 본 연구에서 개발된 AdamIHS를 활용하면 다양한 분야에서 향상된 예측성능을 보여줄 수 있을 것이다.

수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발 (Development of new artificial neural network optimizer to improve water quality index prediction performance)

  • 류용민;김영남;이대원;이의훈
    • 한국수자원학회논문집
    • /
    • 제57권2호
    • /
    • pp.73-85
    • /
    • 2024
  • 하천과 저수지의 수질을 예측하는 것은 수자원관리를 위해 필요하다. 높은 정확도의 수질 예측을 위해 많은 연구들에서 인공신경망이 활용되었다. 기존 연구들은 매개변수를 탐색하는 인공신경망의 연산자인 옵티마이저로 경사하강법 기반 옵티마이저를 사용하였다. 그러나 경사하강법 기반 옵티마이저는 지역 최적값으로의 수렴 가능성과 해의 저장 및 비교구조가 없다는 단점이 있다. 본 연구에서는 인공신경망을 이용한 수질 예측성능을 향상시키기 위해 개량형 옵티마이저를 개발하여 경사하강법 기반 옵티마이저의 단점을 개선하였다. 본 연구에서 제안한 옵티마이저는 경사하강법 기반 옵티마이저 중 학습오차가 낮은 Adaptive moments (Adam)과 Nesterov-accelerated adaptive moments (Nadam)를 Harmony Search(HS) 또는 Novel Self-adaptive Harmony Search (NSHS)와 결합한 옵티마이저이다. 개량형 옵티마이저의 학습 및 예측성능 평가를 위해 개량형 옵티마이저를 Long Short-Term Memory (LSTM)에 적용하여 국내의 다산 수질관측소의 수질인자인 수온, 용존산소량, 수소이온농도 및 엽록소-a를 학습 및 예측하였다. 학습결과를 비교하면, Nadam combined with NSHS (NadamNSHS)를 사용한 LSTM의 Mean Squared Error (MSE)가 0.002921로 가장 낮았다. 또한, 각 옵티마이저별 4개 수질인자에 대한 MSE 및 R2에 따른 예측순위를 비교하였다. 각 옵티마이저의 평균 순위를 비교하면, NadamNSHS를 사용한 LSTM이 2.25로 가장 높은 것을 확인하였다.