• Title/Summary/Keyword: Gradient Echo

Search Result 175, Processing Time 0.027 seconds

First-Pass Observation using Tailored-RF Gradient Echo (TRFGE) MR Imaging in Cat Brain (자기공명 Tailored-RF 경사자계반향영상법을 이용한 고양이 뇌에서의 First-Pass관찰)

  • 문치웅;노용만
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 1995
  • Recently, a new tailored RF gradient echo (TRFGE) sequence was reported. This technique not only enhances the magnetic susceptibility effect but also allows us to measure local changes in brain oxygenation. In this study, a phantom and cat brain experiments were performed on a 4.7 Tesla BIQSPEC (BRUKER) instrument with a 26 cm gradient system. We have demonstrated that the signal intensity (SI) of the TRFGE sequence varies according to the concentration of susceptibility contrast agent. Three capillary tubes with different concentrations of Gd-DTPA (0.01, 0.05, 0.1 mMOI/l) were placed at the middle of a cylindrical water phantom. Using both TRFGE and conventional gradient echo (CGE) sequences, phantom images of the slices which contain all three tubes were obtained. For the animal experiment, cats were anesthetized and ventilated using halotane (0.5%) and a $N_2O/ O_2$ mixture (2:1), and blood pressure and heart rate were monitored and kept normal. For the observation of tue first pass of Gd- DTPA, imaging was started at t = 0. At t = 8 ~ 12s, 0.2 mMol/Kg Gd-DTPA was manually injected in the femoral vein. The imaging parameters were TRITE = 25/10 msec, flip angle = $30^{\circ}$, FOV = 10cm, image matrix size = $128{\times}128$ with 64 phase encodings and the image data acquisition window was 10 msec. SI-time curves were then obtained from a series of 30 images which were collected at 2 sec intervals using both CGE and TRFGE pulse sequences before, during, and following the contrast injection.

  • PDF

Design of Echo Classifier Based on Neuro-Fuzzy Algorithm Using Meteorological Radar Data (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 에코 분류기 설계)

  • Oh, Sung-Kwun;Ko, Jun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.676-682
    • /
    • 2014
  • In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result (일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과)

  • Jahng, Geon-Ho;Pickup, Stephen
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

  • PDF

MR Lymphangiography (자기공명영상 림프관조영술)

  • Sang Hoon Lee;Joon Pio Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.70-80
    • /
    • 2020
  • Currently, there has been an increase in the use of surgical modalities to treat lymphedema and MR imaging to examine lymphatic vessels. Furthermore, there have been several advancements in the field of MR imaging, from the traditional heavily T2-weighted images to three-dimensional images. Three-dimensional images include spoiled gradient echo images, and numerous advanced techniques have been implemented. Among the fat suppression techniques, mDixon technique has recently been in the spotlight.

Analysis of Eddy Current Effect in Magnetic Resonance Imaging Using the Finite Element Method (유한요소법에 의한 자기공명영상시스템에서의 와전류 영향 분석)

  • Lee, Jeong-Han;Gang, Hyeon-Su;Jo, Min-Hyeong;Mun, Chi-Ung;Lee, Gang-Seok;Lee, Su-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 1999
  • Eddy current in MRI systems degrades gradient field linearity and distorts gradient waveform. When the waveform distortion is spatially variant, it is very difficult to perform special imaging techniques such as the echo planar imaging technique or the fast spin echo imaging technique. In this study, we have developed a new technique to estimate the distorted gradient waveforms at any points inside the imaging region using the finite element method. After obtaining the eddy-current-effect transfer function, which represents magnitude and phase characteristics of the gradient field at a particular point, we have used the transfer function to estimate the actual gradient waveforms at the point. To verify the proposed technique, we have compared the estimated gradient waveforms with the measured ones.

  • PDF

Under standing of MR pulse suquences (MR 펄스파형의 이해)

  • 정광우
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 1998
  • MR 영상을 획득하기 위해서 사용하고 있는 가장 기본적인 펄스파형(pulse sequense)은 스핀반향(spin echo)과 경사자계반향(gradient echo)이며, 최근 다방면으로 응용되고 있는 고속영상기법들은 이 두가지 펄스파형을 기보능로 하고 있다. 펄스파형의 종류와 펄스파형의 변수(TR, TE TI등의 펄스 상이의 시간 간격 및 flip angle 등)에 따라서 MR영상의 특징(대조도, SNR, artifact 등)이 달라지므로 임상응용시에는 목적에 따라 적절한 펄스파혀의 선택과 함께 변수값을 결정해야 한다. 이를 위하여 펄스파형에 관한 기본적인 지식과 함게 간단한 임상응용에 관하여 기술하고자 한다.

  • PDF

Cardiac MRI (심장 자기공명영상)

  • Lee, Jong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The obstacles for cardiac imaging are motion artifacts due to cardiac motion, respiration, and blood flow, and low signal due to small tissue volume of heart. To overcome these obstacles, fast imaging technique with ECG gating is utilized. Cardiac exam using MRI comprises of morphology, ventricular function, myocardial perfusion, metabolism, and coronary artery morphology. During cardiac morphology evaluation, double and triple inversion recovery techniques are used to depict myocardial fluidity and soft tissue structure such as fat tissue, respectively. By checking the first-pass enhancement of myocardium using contrast-enhanced fast gradient echo technique, myocardial blood flow can be evaluated. In addition, delayed imaging in 10 - 15 minutes can inform myocardial destruction such as chronic myocardial infarction. Ventricular function including regional and global wall motion can be checked by fast gradient echo cine imaging in quantitative way. MRI is acknowledged to be practical for integrated cardiac evaluation technique except coronary angiography. Especially delay imaging is the greatest merit of MRI in myocardial viability evaluation.

  • PDF