• Title/Summary/Keyword: Gradient Descent Algorithm

Search Result 196, Processing Time 0.031 seconds

Model Predictive Control of Discrete-Time Chaotic Systems Using Neural Network (신경회로망을 이용한 이산치 혼돈 시스템의 모델 예측제어)

  • Kim, Se-Min;Choi, Yoon-Ho;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.933-935
    • /
    • 1999
  • In this paper, we present model predictive control scheme based on neural network to control discrete-time chaotic systems. We use a feedforward neural network as nonlinear prediction model. The training algorithm used is an adaptive backpropagation algorithm that tunes the connection weights. And control signal is obtained by using gradient descent (GD), some kind of LMS method. We identify that the system identification results through model prediction control have a great effect on control performance. Finally, simulation results show that the proposed control algorithm performs much better than the conventional controller.

  • PDF

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

A study on time-varying control of learning parameters in neural networks (신경망 학습 변수의 시변 제어에 관한 연구)

  • 박종철;원상철;최한고
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

Hybrid CMA-ES/SPGD Algorithm for Phase Control of a Coherent Beam Combining System and its Performance Analysis by Numerical Simulations (CMA-ES/SPGD 이중 알고리즘을 통한 결맞음 빔 결합 시스템 위상제어 및 동작성능에 대한 전산모사 분석)

  • Minsu, Yeo;Hansol, Kim;Yoonchan, Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, we propose a hybrid phase-control algorithm for multi-channel coherent beam combining (CBC) system by combining the covariant matrix adaption evolution strategy (CMA-ES) and stochastic parallel gradient descent (SPGD) algorithms and analyze its operational performance. The proposed hybrid CMA-ES/SPGD algorithm is a sequential process which initially runs the CMA-ES algorithm until the combined final output intensity reaches a preset interim value, and then switches to running the SPGD algorithm to the end of the whole process. For ideal 7-channel and 19-channel all-fiber-based CBC systems, we have found that the mean convergence time can be reduced by about 10% in comparison with the case when the SPGD algorithm is implemented alone. Furthermore, we analyzed a more realistic situation in which some additional phase noise was introduced in the same CBC system. As a result, it is shown that the proposed algorithm reduces the mean convergence time by about 17% for a 7-channel CBC system and 16-27% for a 19-channel system compared to the existing SPGD alone algorithm. We expect that for implementing a CBC system in a real outdoor environment where phase noise cannot be ignored, the hybrid CMA-ES/SPGD algorithm proposed in this study will be exploited very usefully.

Scene-based Nonuniformity Correction for Neural Network Complemented by Reducing Lense Vignetting Effect and Adaptive Learning rate

  • No, Gun-hyo;Hong, Yong-hee;Park, Jin-ho;Jhee, Ho-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.81-90
    • /
    • 2018
  • In this paper, reducing lense Vignetting effect and adaptive learning rate method are proposed to complement Scribner's neural network for nuc algorithm which is the effective algorithm in statistic SBNUC algorithm. Proposed reducing vignetting effect method is updated weight and bias each differently using different cost function. Proposed adaptive learning rate for updating weight and bias is using sobel edge detection method, which has good result for boundary condition of image. The ordinary statistic SBNUC algorithm has problem to compensate lense vignetting effect, because statistic algorithm is updated weight and bias by using gradient descent method, so it should not be effective for global weight problem same like, lense vignetting effect. We employ the proposed methods to Scribner's neural network method(NNM) and Torres's reducing ghosting correction for neural network nuc algorithm(improved NNM), and apply it to real-infrared detector image stream. The result of proposed algorithm shows that it has 10dB higher PSNR and 1.5 times faster convergence speed then the improved NNM Algorithm.

Proof-of-principle Experimental Study of the CMA-ES Phase-control Algorithm Implemented in a Multichannel Coherent-beam-combining System (다채널 결맞음 빔결합 시스템에서 CMA-ES 위상 제어 알고리즘 구현에 관한 원리증명 실험적 연구)

  • Minsu Yeo;Hansol Kim;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.107-114
    • /
    • 2024
  • In this study, the feasibility of using the covariance-matrix-adaptation-evolution-strategy (CMA-ES) algorithm in a multichannel coherent-beam-combining (CBC) system was experimentally verified. We constructed a multichannel CBC system utilizing a spatial light modulator (SLM) as a multichannel phase-modulator array, along with a coherent light source at 635 nm, implemented the stochastic-parallel-gradient-descent (SPGD) and CMA-ES algorithms on it, and compared their performances. In particular, we evaluated the characteristics of the CMA-ES and SPGD algorithms in the CBC system in both 16-channel rectangular and 19-channel honeycomb formats. The results of the evaluation showed that the performances of the two algorithms were similar on average, under the given conditions; However, it was verified that under the given conditions the CMA-ES algorithm was able to operate with more stable performance than the SPGD algorithm, as the former had less operational variation with the initial phase setting than the latter. It is emphasized that this study is the first proof-of-principle demonstration of the CMA-ES phase-control algorithm in a multichannel CBC system, to the best of our knowledge, and is expected to be useful for future experimental studies of the effects of additional channel-number increments, or external-phase-noise effects, in multichannel CBC systems based on the CMA-ES phase-control algorithm.

An Iterative Approach for Alternate Mainbeam Nulling Algorithm in Coherent Environment (간섭신호 환경에서 교대 주빔 제거 알고리듬을 위한 반복 기법)

  • Chang, Byung-Kun;Jeon, Chang-Dae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • This paper concerns an efficient iterative approach for eliminating coherent interference signals in linearly constrained adaptive arrays. The Alternate Mainbeam Nulling Algorithm[1] is implemented iteratively to find an optimum weight vector. The convergence parameters in the unit gain and null constraints are calculated using steepest descent method with gradient estimation. The nulling performance of the proposed method is compared with that of conventional ones. It is shown that the proposed method performs better than conventional ones when the power of the coherent signals is large compared with a desired signal. Also, it performs consistently well for more number of interferences.

  • PDF

Self Learning Fuzzy Sliding Mode Controller for Nonlinear System

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.103.1-103
    • /
    • 2002
  • In variable structure control algorithms, The control law used to realized the desired sliding mode dynamics is discontinuous on the switching manifold. However, due to imperfections in switching, such as time delays, the system trajectory chatters instead of sliding along the switching manifold. This chattering is undesirable because it may excite unmodeled high frequency dynamics in the physical system. In this paper, to overcome this drawback a self-organizing fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties ill the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

  • PDF

Multi-layer Neural Network with Hybrid Learning Rules for Improved Robust Capability (Robustness를 형성시키기 위한 Hybrid 학습법칙을 갖는 다층구조 신경회로망)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.211-218
    • /
    • 1994
  • In this paper we develope a hybrid learning rule to improve the robustness of multi-layer Perceptions. In most neural networks the activation of a neuron is deternined by a nonlinear transformation of the weighted sum of inputs to the neurons. Investigating the behaviour of activations of hidden layer neurons a new learning algorithm is developed for improved robustness for multi-layer Perceptrons. Unlike other methods which reduce the network complexity by putting restrictions on synaptic weights our method based on error-backpropagation increases the complexity of the underlying proplem by imposing it saturation requirement on hidden layer neurons. We also found that the additional gradient-descent term for the requirement corresponds to the Hebbian rule and our algorithm incorporates the Hebbian learning rule into the error back-propagation rule. Computer simulation demonstrates fast learning convergence as well as improved robustness for classification and hetero-association of patterns.

  • PDF