• 제목/요약/키워드: Graded microstructure

검색결과 35건 처리시간 0.028초

액체로켓엔진용 인젝터 접합부의 미세조직 (Microstructure of the Brazed Joint for LRE Injector)

  • 남대근;홍석호;이병호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.87-89
    • /
    • 2004
  • Brazing is an indispensable manufacturing technology for liquid rocket engine. In this study, for LRE injector, stainless steel 316L was used of base metal and Ni based MBF-20 of insert metal. The brazing and diffusion was carried out under various conditions. There are solid phase and. residual liquid phase in the brazed joint. With increment of holding time, the amount of solid phase increased and the elements of base metal and insert metal compositionally graded. Boron diffused from insert metal came into base metal and made boride with Cr and Mo at the brazed joint of base metal and insert metal.

  • PDF

가스터빈 날개용 경사기능재료의 열충격 특성 (Thermal shock characteristics of FGM for gas turbine blade)

  • 임재규;송준희;김연직
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.73-79
    • /
    • 1998
  • The development of a new material which should be continuously usable under severe environment of very high temperature has been urgently requested. The conventional thermal barrier coating(TBC) is a two layer coating, but a composition and a microstructure of functionally graded material(FGM) are varied continuously from place to place in ways designed to provide it with the maximum function of mitigating the induced thermal stress. The purpose of this study is to evaluate the heat-resistant characteristics by thermal shock of laser and furnace heating. The fracture behaviors of non-FGM(NFGM) and FGM were investigated based on acoustic emission(AE) technique during thermal shock test. Therefore, it can be concluded that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

Thermomechanical Properties of Functionally Graded $Al-SiC_p$ Composites

  • Song, Dae-Hyun;Park, Yong-Ha;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.85-86
    • /
    • 2006
  • A theoretical model is applied to the analysis of thermomechanical properties of $Al-SiC_p$ FGMs in this study. Functionally graded $Al-SiC_p$ composites ($Al-SiC_p$ FGMs) consisted with 10 layers gradually changing volume fractions of Al and $SiC_p$ were fabricated using the pressureless infiltration technique. $Al-SiC_p$ FGMs plates of total thickness of 3mm, 5mm and 7mm with fairly uniform distribution and compositional gradient of $SiC_p$ reinforcement in the Al matrix throughout the thickness was successfully fabricated. The curvature of $Al-SiC_p$ FGM plates was measured to check the internal stress distribution predicted via a theoretical model for the analysis of thermo-mechanical deformation. The evolution of curvature and also internal stresses in response to temperature variations could be predicted for the different combinations of geometric thickness of FGM plates. Theoretical prediction of thermally induced stress distribution makes it possible to design FGM structures without any critical failure during the usage of them.

  • PDF

Free vibration of functionally graded carbon nanotubes reinforced composite nanobeams

  • Miloud Ladmek;Abdelkader Belkacem;Ahmed Amine Daikh;Aicha Bessaim;Aman Garg;Mohammed Sid Ahmed Houari;Mohamed-Ouejdi Belarbi;Abdelhak Ouldyerou
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.161-177
    • /
    • 2023
  • This paper proposes an analytical method to investigate the free vibration behaviour of new functionally graded (FG) carbon nanotubes reinforced composite beams based on a higher-order shear deformation theory. Cosine functions represent the material gradation and material properties via the thickness. The kinematic relations of the beam are proposed according to trigonometric functions. The equilibrium equations are obtained using the virtual work principle and solved using Navier's method. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanobeams to nonlocal length scale, strain gradient microstructure-scale, material distribution and geometry.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

On vibrations of functionally graded carbon nanotube (FGCNT) nanoplates under moving load

  • Alaa A. Abdelrahman;Ismail Esen;Mohammed Y. Tharwan;Amr Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.395-412
    • /
    • 2024
  • This article develops a nonclassical size dependent nanoplate model to study the dynamic response of functionally graded carbon nanotube (FGCNT) nanoplates under a moving load. Both nonlocal and microstructure effects are incorporated through the nonlocal strain gradient elasticity theory. To investigate the effect of reinforcement orientation of CNT, four different configurations are studied and analysed. The FGM gradation thorough the thickness direction is simulated using the power law. In the context of the first order shear deformation theory, the dynamic equations of motion and the associated boundary conditions are derived by Hamilton's principle. An analytical solution of the dynamic equations of motion is derived based on the Navier methodology. The proposed model is verified and compared with the available results in the literature and good agreement is found. The numerical results show that the dynamic performance of FGCNT nanoplates could be governed by the reinforcement pattern and volume fraction in addition to the non-classical parameters and the moving load dimensionless parameter. Obtained results are reassuring in design and analysis of nanoplates reinforced with CNTs.

알루미나몰드를 사용한 슬립캐스팅법에 의한 3Y-TZP/SUS316계 경사기능재료의 제조 (Fabrication of 3Y-TZP/SUS316 Functionally Graded Material by Slip Casting Method Using Alumina Mold)

  • 여정구;정연길;이세훈;최성철
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.70-78
    • /
    • 1997
  • 3Y TZP/SUS316계 경사기능재료를 슬립캐스팅법을 이용하여 제조하였다. 슬립캐스팅 공정에서 석고몰드를 대체하기 위해 알루미나몰드를 제조하였고, 3Y-TZP/SUS316 2상 슬러리의 최적 분산조건을 ESA, 점도계, 침전거동의 관찰 등을 통해 결정하였으며, 석고몰드와 알루미나몰드로 캐스팅한 시험편의 제반 특성을 소결수축율변화, 건조 및 소결거동, 미세구조 관찰 등으로 조사하였다. 그 결과 알루미나몰드를 사용하여 제조된 시험편에서는 석고몰드 사용시 나타나는 표면에서의 오염이 관찰되지 않았으며, 각 층의 두께조절이 쉬웠고 높은 재현성을 나타냄을 알 수 있었다. 특히 알루미나몰드를 사용하여 제조한 SUS316에서는 어떤 열화현상도 관찰되지 않았다. 결국 슬립캐스팅 공정으로 3Y-TZP/SUS316계 경사기능재료를 제조함에 있어서 기존의 석고몰드보다 다공질 알루미나몰드의 사용이 바람직하다는 것을 알 수 있었다.

  • PDF

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

Recent Development of Science and Technology of Hard Materials in Japan

  • Hayashi, Koji
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.303-311
    • /
    • 1998
  • Hard materials such as hardmetal, coated hardmetal, cermet, ceramics and diamond or c-BN sintered compact are a kind of grain-dispersed alloy with high volume of hard particles. These are used for cutting tools, wear-resistant tools, rock bits, high pressure apparatus, etc. The annual production in Japan is about 1.7 billion dollars (200 billion yen). This is greatly owed to the development in science and technology which has been accomplished by applying new concepts such as fine or uniform grain microstructure, orientation of crystal grains, functionally graded material, artificial lattice and coherent bonding in recent years. In this review, the development in recent years in Japan is briefly summarized.

  • PDF

FGMs의 최적화 제조와 DIC 평가 (Optimized Fabrication of FGMs and DIC Evaluation)

  • 권오헌
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.27-32
    • /
    • 2011
  • Recently new technological development needs the advances in the fields of new materials. The most advanced design is not useful if new material's performance is not realized adequately for bearing the service loads and conditions. FGMs suggests the reasonable solution for the those requirements because of its wide range microstructure and the continuous constitutions. It's especially good for the heat-resisting components, piezoelectricity and aerocraft fields. However the fabrication and its experimental estimation methods have not been established because of its various freedom of material's properties. Therefore it is necessary to develope the fabrication method and estimation of strength and deformation. The experiments are conducted under a four point flexural test. According to results, this study shows that FGMs is well fabricated and the deformation and strain fields are expressed very well by digital image correlation method.