• Title/Summary/Keyword: Governing the State

Search Result 361, Processing Time 0.025 seconds

Steady-Flow Characteristics of Bundle Fluid in Drawing (인발 집속유체의 정상유동 특성)

  • Huh You;Kim Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.612-621
    • /
    • 2006
  • Drawing is a mechanical operation attenuating material thickness to an appropriate level for the next processing or end usage. When the input material has a form of bundle or bundles made of very thin and long shaped wires or fibers, this attenuation operation is called 'bundle drawing' or 'drafting'. Bundle drawing is being used widely in manufacturing micro sized wires or staple yarns. However, the bundle processed by this operation has more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical laws containing physical variables, i.e. linear density and velocity as the dynamic state variables of the bundle fluid. The governing equations resulting from the modeling show that they appear in a slightly different form from what they do in a continuum fluid. Then, the governing equations system is simplified in a steady state and the bundle dynamics is simulated, showing that the shape of the velocity profiles depends on two model parameters. Experiments confirm that the model parameters are to be well adjusted to show a coincidence with the theoretical analysis. The higher the drawing ratio and drawing speed we, the more sensitive becomes the bundle flow to exogenous disturbances.

Nonlinear wind-induced instability of orthotropic plane membrane structures

  • Liu, Changjiang;Ji, Feng;Zheng, Zhoulian;Wu, Yuyou;Guo, Jianjun
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.415-432
    • /
    • 2017
  • The nonlinear aerodynamic instability of a tensioned plane orthotropic membrane structure is theoretically investigated in this paper. The interaction governing equation of wind-structure coupling is established by the Von $K\acute{a}rm\acute{a}n's$ large amplitude theory and the D'Alembert's principle. The aerodynamic force is determined by the potential flow theory of fluid mechanics and the thin airfoil theory of aerodynamics. Then the interaction governing equation is transformed into a second order nonlinear differential equation with constant coefficients by the Bubnov-Galerkin method. The critical wind velocity is obtained by judging the stability of the second order nonlinear differential equation. From the analysis of examples, we can conclude that it's of great significance to consider the orthotropy and geometrical nonlinearity to prevent the aerodynamic instability of plane membrane structures; we should comprehensively consider the effects of various factors on the design of plane membrane structures; and the formula of critical wind velocity obtained in this paper provides a more accurate theoretical solution for the aerodynamic stability of the plane membrane structures than the previous studies.

Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck (GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자)

  • Cho, Jeong-Rae;Park, Young Hwan;Park, Sung Yong;Cho, Kunhee;Kim, Sung Tae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using State-space approach

  • Tlidji, Youcef;Benferhat, Rabia;Daouadji, Tahar Hassaine;Tounsi, Abdelouahed;Trinh, L.Cong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.453-463
    • /
    • 2022
  • This paper aims to investigate the vibration analysis of functionally graded porous (FGP) beams using State-space approach with several classical and non-classical boundary conditions. The materials properties of the porous FG beams are considered to have even and uneven distributions profiles along the thickness direction. The equation of motion for FGP beams with various boundary conditions is obtained through Hamilton's principle. State-space approach is used to obtain the governing equation of porous FG beam. The comparison of the results of this study with those in the literature validates the present analysis. The effects of span-to-depth ratio (L/h), of distribution shape of porosity and others parameters on the dynamic behavior of the beams are described. The results show that the boundary conditions, the geometry of the beams and the distribution shape of porosity affect the fundamental frequencies of the beams.

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

Interaction of the State Authority and Business Structures in the In novative Development of the State Local Governance and Self-Governing in Kazakhstan

  • Karlygash, Mukhtarova;Laura, Ashirbekova
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.3 no.3
    • /
    • pp.27-34
    • /
    • 2015
  • The authors consider, that the effectiveness of the government's activity, the improvement of decisions' quality depends on implementation of modern innovative technologies through activation the direct and feedback connection between public authority system and the business -community, through increasing the level of their collaboration by participating in solving main social problems and discu ssing innovative projects (initiative) according questions about socio-economic development of the country, improving the system of the state and local government in the Republic of Kazakhstan.

Bending analysis of smart functionally graded plate using the state-space approach

  • Niloufar Salmanpour;Jafar Rouzegar;Farhad Abad;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.525-541
    • /
    • 2024
  • This study uses the state-space approach to study the bending behavior of Levy-type functionally graded (FG) plates sandwiched between two piezoelectric layers. The coupled governing equations are obtained using Hamilton's principle and Maxwell's equation based on the efficient four-variable refined plate theory. The partial differential equations (PDEs) are converted using Levy's solution technique to ordinary differential equations (ODEs). In the context of the state-space method, the higher-order ODEs are simplified to a system of first-order equations and then solved. The results are compared with those reported in available references and those obtained from Abaqus FE simulations, and good agreements between results confirm the accuracy and efficiency of the approach. Also, the effect of different parameters such as power-law index, aspect ratio, type of boundary conditions, thickness-to-side ratio, and piezoelectric thickness are studied.

Numerical simulation of non-isothermal flow in oil reservoirs using a two-equation model

  • dos Santos Heringer, Juan Diego;de Souza Debossam, Joao Gabriel;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.147-168
    • /
    • 2019
  • This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells. Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid and rock have very different thermal properties, and we also perform comparisons between one- and two-equation models. The governing equations are discretized using the Finite Volume Method. For the numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained show the suitability of the numerical method and the technical feasibility of heating the reservoir with static equipment.

Multiobjective State-Feedback Control of Beams with Piezoelectric Device (압전체가 부착된 보의 다목적 상태궤한제어)

  • Park, Chul-Hue;Hong, Seong-Il;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF