• 제목/요약/키워드: GoogleNet

검색결과 52건 처리시간 0.02초

워드넷과 구글에 기반한 온톨로지 개체의 일반화 (Generalization of Ontology Instances Based on WordNet and Google)

  • 강신재;강인수
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.363-370
    • /
    • 2009
  • 본 논문은 온톨로지의 지식을 확장하기 위하여 웹 페이지 등 텍스트에서 추출된 온톨로지 개체(ontology instances)를 일반화하는 방법을 제시한다. 이를 위해서는 단어 의미 중의성 해소 과정이 필수적인데, 구글, 워드넷과 같은 오픈 API와 어휘 리소스를 이용하여 비교사학습 방법으로 해결하는 방법을 제안한다. 실험 결과 기존 연구에 비해 15.8%의 성능 향상을 얻을 수 있었다.

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.

흉부 X선 영상을 이용한 작은 층수 ResNet 기반 폐렴 진단 모델의 성능 평가 (Performance Evaluation of ResNet-based Pneumonia Detection Model with the Small Number of Layers Using Chest X-ray Images)

  • 최용은;이승완
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권4호
    • /
    • pp.277-285
    • /
    • 2023
  • In this study, pneumonia identification networks with the small number of layers were constructed by using chest X-ray images. The networks had similar trainable-parameters, and the performance of the trained models was quantitatively evaluated with the modification of the network architectures. A total of 6 networks were constructed: convolutional neural network (CNN), VGGNet, GoogleNet, residual network with identity blocks, ResNet with bottleneck blocks and ResNet with identity and bottleneck blocks. Trainable parameters for the 6 networks were set in a range of 273,921-294,817 by adjusting the output channels of convolution layers. The network training was implemented with binary cross entropy (BCE) loss function, sigmoid activation function, adaptive moment estimation (Adam) optimizer and 100 epochs. The performance of the trained models was evaluated in terms of training time, accuracy, precision, recall, specificity and F1-score. The results showed that the trained models with the small number of layers precisely detect pneumonia from chest X-ray images. In particular, the overall quantitative performance of the trained models based on the ResNets was above 0.9, and the performance levels were similar or superior to those based on the CNN, VGGNet and GoogleNet. Also, the residual blocks affected the performance of the trained models based on the ResNets. Therefore, in this study, we demonstrated that the object detection networks with the small number of layers are suitable for detecting pneumonia using chest X-ray images. And, the trained models based on the ResNets can be optimized by applying appropriate residual-blocks.

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • 강신재;강인수
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

효율적인 상품등록을 위한 워드넷 기반의 오픈마켓 카테고리 검색 시스템 (A WordNet-based Open Market Category Search System for Efficient Goods Registration)

  • 홍명덕;김장우;조근식
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권9호
    • /
    • pp.17-27
    • /
    • 2012
  • 여러 오픈마켓에서 판매자가 동일한 상품을 등록할 시에 각 오픈마켓마다 다른 기준으로 제공되는 카테고리로 인하여 카테고리 선정에 어려움이 발생한다. 본 논문에서는 판매자가 오픈마켓에서 상품 등록 시 다른 오픈마켓에서 기 판매하고 있는 상품의 카테고리와 의미적으로 가장 연관성이 높은 카테고리를 추천하는 방법을 제안한다. 이때 입력받은 카테고리를 의미 분석하는 방법으로 형태소 분석, Wiki 낱말사전, WordNet, Google 번역 서비스를 사용하여 추출된 색인어로 카테고리를 검색한 후, 의미적 연관성 측정을 통하여 가장 의미가 비슷한 카테고리를 추천하는 방법이다. 실험 결과로 색인어 기반의 검색방법 보다 제안하는 의미분석 검색방법이 정확한 검색결과를 보여주어 시스템의 신뢰도를 향상시켰으며, 카테고리를 선택하는데 드는 시간비용을 절감해주는 것을 보인다.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

빅데이터를 활용한 음식관광관련 의미연결망 분석의 탐색적 적용 (An Exploratory Study on the Semantic Network Analysis of Food Tourism through the Big Data)

  • 김학선
    • 한국조리학회지
    • /
    • 제23권4호
    • /
    • pp.22-32
    • /
    • 2017
  • The purpose of this study was to explore awareness of food tourism using big data analysis. For this, this study collected data containing 'food tourism' keywords from google web search, google news, and google scholar during one year from January 1 to December 31, 2016. Data were collected by using SCTM (Smart Crawling & Text Mining), a data collecting and processing program. From those data, degree centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of 'core service' and 'social marketing' was high. In addition, the web visibility was also high for destination, such as rural, place, ireland and heritage; 'socioeconomic circumstance' related words, such as economy, region, public, policy, and industry. Convergence of iterated correlations showed 4 clustered named 'core service', 'social marketing', 'destinations' and 'social environment'. It is expected that this diagnosis on food tourism according to changes in international business environment by using these web information will be a foundation of baseline data useful for establishing food tourism marketing strategies.

Development of a Work Management System Based on Speech and Speaker Recognition

  • Gaybulayev, Abdulaziz;Yunusov, Jahongir;Kim, Tae-Hyong
    • 대한임베디드공학회논문지
    • /
    • 제16권3호
    • /
    • pp.89-97
    • /
    • 2021
  • Voice interface can not only make daily life more convenient through artificial intelligence speakers but also improve the working environment of the factory. This paper presents a voice-assisted work management system that supports both speech and speaker recognition. This system is able to provide machine control and authorized worker authentication by voice at the same time. We applied two speech recognition methods, Google's Speech application programming interface (API) service, and DeepSpeech speech-to-text engine. For worker identification, the SincNet architecture for speaker recognition was adopted. We implemented a prototype of the work management system that provides voice control with 26 commands and identifies 100 workers by voice. Worker identification using our model was almost perfect, and the command recognition accuracy was 97.0% in Google API after post- processing and 92.0% in our DeepSpeech model.

다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교 (Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks)

  • 김상홍;이보원
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.454-460
    • /
    • 2020
  • 음성인식 기능을 제공하는 인공지능 비서들은 정확도가 뛰어난 클라우드 기반의 음성인식을 통해 동작한다. 클라우드 기반의 음성인식에서 시작 단어 인식은 대기 중인 기기를 활성화하는 데 중요한 역할을 한다. 본 논문에서는 공개 데이터셋인 구글의 Speech Commands 데이터셋을 사용하여 스펙트로그램 및 멜-주파수 캡스트럼 계수 특징을 입력으로 하여 모바일 기기에 대응한 저 연산 시작 단어 검출을 위한 합성곱 신경망의 성능을 비교한다. 본 논문에서 사용한 합성곱 신경망은 다층 퍼셉트론, 일반적인 합성곱 신경망, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet이며, MobileNet의 성능을 유지하면서 모델 크기를 1/25로 줄인 네트워크도 제안한다.

Application of Deep Learning to the Forecast of Flare Classification and Occurrence using SOHO MDI data

  • Park, Eunsu;Moon, Yong-Jae;Kim, Taeyoung
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.60.2-61
    • /
    • 2017
  • A Convolutional Neural Network(CNN) is one of the well-known deep-learning methods in image processing and computer vision area. In this study, we apply CNN to two kinds of flare forecasting models: flare classification and occurrence. For this, we consider several pre-trained models (e.g., AlexNet, GoogLeNet, and ResNet) and customize them by changing several options such as the number of layers, activation function, and optimizer. Our inputs are the same number of SOHO)/MDI images for each flare class (None, C, M and X) at 00:00 UT from Jan 1996 to Dec 2010 (total 1600 images). Outputs are the results of daily flare forecasting for flare class and occurrence. We build, train, and test the models on TensorFlow, which is well-known machine learning software library developed by Google. Our major results from this study are as follows. First, most of the models have accuracies more than 0.7. Second, ResNet developed by Microsoft has the best accuracies : 0.77 for flare classification and 0.83 for flare occurrence. Third, the accuracies of these models vary greatly with changing parameters. We discuss several possibilities to improve the models.

  • PDF