• 제목/요약/키워드: Google Play Store

검색결과 56건 처리시간 0.022초

스마트 관광 활성화를 위한 트립어드바이저 애플리케이션 리뷰 분석 : 토픽 모델링을 중심으로 (Analyzing TripAdvisor application reviews to enable smart tourism : focusing on topic modeling)

  • 이유나;한무명초;유선영;소미기;노미진
    • 스마트미디어저널
    • /
    • 제12권8호
    • /
    • pp.9-17
    • /
    • 2023
  • 정보통신의 발달과 스마트 기기의 발전 및 보급 향상은 관광 형태의 변화를 야기하였고, 이후 스마트 관광이라는 개념이 등장하였다. 이에 스마트 관광 정책 및 설문에 관한 연구가 진행되고 있으나 애플리케이션 리뷰에 관한 연구는 미비한 편이다. 본 연구는 구글 플레이 스토어 내 스마트 관광 분야의 대표적인 애플리케이션인 트립어드바이저 애플리케이션 리뷰 데이터를 수집하여 LDA(Latent Dirichlet Allocation) 토픽 모델링을 통해 사용 용도와 사용자 만족을 파악하고자 한다. 분석 결과 4개의 토픽이 도출되었으며 2개의 토픽에서는 긍정적인 평가를 나머지 2개의 토픽에서는 부정적인 평가를 하고 있었다. 사용자들은 해당 애플리케이션의 숙박 및 관광 명소 추천 시스템에 만족하고 있음을 알 수 있었으며 검색 시 설정한 필터가 적용되지 않거나 업데이트 후 리뷰가 게시되지 않음에 불편을 겪고 있음을 알 수 있었다. 이에 다양한 추천 카테고리를 애플리케이션에 추가하여 사용자에게 다양한 경험을 제공하는 것이 만족도 향상에 도움이 될 것으로 기대된다. 또한 필터 기능을 포함한 애플리케이션 문제를 파악하여 애플리케이션 환경 점검과 해당 기능 오류 개선을 한다면 사용자 만족도를 향상시킬 수 있을 것으로 기대된다.

고객 리뷰를 통한 모바일 앱 서비스 포지셔닝 분석: 비대면 진료 앱을 중심으로 (Customer Voices in Telehealth: Constructing Positioning Maps from App Reviews)

  • 김민재;이홍주
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.69-90
    • /
    • 2023
  • 본 연구의 목적은 최근 확산되고 있는 국내 비대면 의료 서비스 애플리케이션의 서비스 속성과 소비자 반응을 정확히 평가하고 각 서비스간 차별성을 시각화하기 위한 방안을 모색하는 것이다. 이를 위해 국내에서 서비스 중인 주요 6개 비대면 진료 애플리케이션의 구글 플레이스토어 사용자 리뷰 데이터 총 2만 건을 수집하였다. 수집된 데이터에 대해 문장 단위로 분리한 후, BERTopic 모델링 기법을 적용하여 각 문장이 속한 서비스 속성에 대한 토픽을 도출하였다. 다음으로 미세조정된 KoBERT 모델을 통해 각 문장의 토픽에 대한 감성 점수를 예측하였다. 분석 결과, 사용자 리뷰로부터 애플리케이션 속성과 진료 속성 두 가지 범주 아래에서 각각 5개와 3개의 서비스 특성 토픽이 발견되었다. 애플리케이션 속성으로는 '예약 시스템', '사용 용이성', '재고 확인', '디자인', '안정성' 등이, 진료 속성으로는 '원격 의료적 속성', '편의성', '배송' 등이 도출되었다. 각 애플리케이션은 이러한 속성들에 대해 다른 수준의 감성 점수를 보였다. 주성분분석을 통해 속성별 감성 점수를 축약하여 2차원 공간 상의 포지셔닝 맵을 생성하였다. 결과적으로 본 연구는 비대면 진료 애플리케이션 사용자 리뷰 텍스트를 바탕으로 실증적 통계 방법과 텍스트 마이닝 기술을 접목하여 서비스 속성 도출, 감성 분석, 제품 포지셔닝 이라는 일련의 체계를 제시하고 있다. 이는 비대면 진료 애플리케이션의 서비스 품질과 소비자 반응을 객관적으로 진단할 수 있는 효과적인 방안이 될 것으로 기대된다.

정부24 앱 사용자 리뷰 분석을 통한 문제 파악 및 개선방안: 토픽 모델을 통한 통찰 (Problem Identification and Improvement Measures through Government24 App User Review Analysis: Insights through Topic Model)

  • 한무명초;노미진
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.27-35
    • /
    • 2023
  • 4차 산업혁명과 코로나19 대유행의 영향으로 비대면 환경이 활성화되면서, 정부24 앱을 활용한 민원 서비스 이용량이 급증하고 있다. 따라서 공공 앱에 대한 사용자들의 불만과 개선 요구도 늘어나고 있으며 이에 대한 체계적인 관리가 필요하다. 본 연구의 목적은 정부24 앱 사용자의 불만 사항을 분석하여 민원인의 불만 현황을 파악하고 개선방안을 제시하는 것이다. 구글 플레이 스토어에서 2013년 5월 2일부터 2023년 6월 30일까지 데이터 6,344건을 수집하였으며, 이 중 평점이 1점이면서 '좋아요(thumbsUp)'를 1회 이상 받은 1,199건의 데이터를 토픽 모델 분석에 사용하였다. 분석 결과 '증명서 발급 문제', '사이트 작동 및 UI 문제', '사용자 아이디 관련 문제', '업데이트 문제', '공무원의 앱 관리 문제', '예산 낭비 문제((별 한 개도 or 세금이) 아깝다)', '비밀번호 관련 문제'라는 총 7개의 토픽을 추출하였다. 또한, 전체 토픽은 2021년까지 증가세를 보이다가 2022년에는 약간 감소하였으나 2023년에 다시 증가하는 추세를 보여 업데이트와 관리가 매우 시급하다. 본 연구의 결과가 현재 공공 앱의 문제점을 파악하여 앞으로 민원인이 만족하는 공공 앱 개발 및 관리에 도움이 되기를 기대한다.

Causal Impact 분석 기법을 접목한 COVID-19 팬데믹 전·후 메타버스 애플리케이션 리뷰의 토픽 변화 분석 (Analysis of Topic Changes in Metaverse Application Reviews Before and After the COVID-19 Pandemic Using Causal Impact Analysis Techniques)

  • 이소원;노미진;한무명초;김양석
    • 스마트미디어저널
    • /
    • 제13권1호
    • /
    • pp.36-44
    • /
    • 2024
  • 가상환경 기술의 발전과 COVID-19 팬데믹으로 언택트 문화가 부상함에 따라 메타버스(Metaverse)가 주목받고 있다. 본 연구에서는 최근 메타버스 서비스로 주목받는 "제페토" 애플리케이션에 대한 사용자들의 리뷰를 분석하여, COVID-19 팬데믹 이후 메타버스에 대한 요구사항의 변화를 확인하고자 하였다. 이를 위해 2018년 9월부터 2023년 3월까지 구글플레이스토어에 작성된 "제페토" 애플리케이션 리뷰 109,662건을 수집하였으며, LDA 토픽모델링 기법을 활용하여 토픽을 추출하고, COVID-19 팬데믹이 선언된 "2020년 3월 11일"을 기준으로 전·후로 토픽이 어떻게 변화했는지 Causal Impact 기법을 사용하여 분석하였다. 분석 결과 애플리케이션 기능적 문제(토픽1), 보안 문제(토픽2), 애플리케이션 내 가상화폐(Zem)에 대한 불만 사항(토픽3), 애플리케이션 성능(토픽4), 개인정보 관련 문제(토픽5) 등 5가지 토픽이 추출되었으며, 이들 중 보안 문제(토픽2)가 COVID-19 팬데믹에 가장 큰 영향을 받았음이 확인하였다.

모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석 (A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach)

  • 김소연;조지연;박상열;이봉규
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.109-119
    • /
    • 2024
  • 본 연구는 모바일 등 온디바이스(on-device)에 탑재된 생성형 AI 기반 서비스가 증가하는 환경 속에서 온디바이스 AI 관련 초기연구에 기여하고자 한다. 모바일 환경에서 생성형 AI 기반 챗봇 서비스의 성공 전략을 도출하기 위해 구글 플레이 스토어에서 수집한 20만 건 이상의 실제 사용자 경험 리뷰 데이터를 LDA 토픽모델링 기법을 사용하여 분석하였다. 정보시스템 성공 모델(ISSM)에 기반하여 도출된 주제를 해석한 결과 정보 품질에는 튜터링, 대답의 제한, 신뢰할 수 없는 정보와 같은 토픽이, 시스템 품질에는 멀티모달서비스, 대화의 품질, 디바이스 상호운용성의 토픽이, 서비스 품질에는 디바이스 간 호환성, 서비스의 사용 용이성, 유료 서비스의 품질, 계정 호환성의 토픽이, 마지막으로 순 효익에는 창의적 협업 토픽이 연결되었다. 생성형 AI의 의인화는 기존 모델로 설명되지 않는 새로운 경험 요인으로 나타났다. 본 연구는 사용자 측면에서의 구체적인 긍정 및 부정 경험 차원을 이론에 기반하여 설명함으로써 향후 관련 연구의 방향을 제시하고, 성공적인 비즈니스를 위한 개선점과 보완점을 찾아 기업에게 서비스의 성공적 운영을 위한 전략적 인사이트를 제공하고자 한다.

비콘을 활용한 위치기반 지역축제 모바일 애플리케이션과 데이터 분석 시스템 개발 (Developments of Local Festival Mobile Application and Data Analysis System Applying Beacon)

  • 김송이;김원표;정철
    • 한국과학예술포럼
    • /
    • 제31권
    • /
    • pp.21-32
    • /
    • 2017
  • 지역축제는 문화를 형성하는 소통의 장으로 국내 관광 사업의 수요를 증가시키고, 지역의 이미지 창출, 전통 문화의 보존, 관광객 유입, 일자리 창출, 지역문화의 콘텐츠 개발, 지역특산품 판매 촉진 등 지역경제에 많은 파급효과와 지역경제 활성화에 중요한 가치를 지니고 있다. 무선통신 기술인 사물인터넷(IoT, Internet of Thing) 요소기술은 점차적으로 발전하고 있고, 특히 사물인터넷 서비스 중 하나인 비콘은 국내·외에서 다양한 서비스 형태로 활용되고 있다. 그러나 이러한 사물인터넷 서비스, 디지털 및 모바일 기술의 확산에도 불구하고, 수 없이 많은 지역축제에 대한 정보를 개인이 하나하나 찾기란 쉽지 않고, 기존에 개발된 축제 관련 애플리케이션은 단순 정보전달 수준에 국한되어 있거나 일회성인 축제 정보제공, 축제장 내의 정보제공 방식, 개발 축제마다 별도의 애플리케이션 형태제공, 단발성 사용 등의 문제점을 안고 있다. 이러한 배경 하에 본 연구는 비콘을 활용한 위치기반 지역축제 모바일 애플리케이션과 데이터 분석 시스템 개발하여 축제 방문객에게 맞춤형 정보를 제공하는데 그 목적이 있다. 본 연구의 기술개발을 통해 '축제장 혼잡도 알고리즘', '방문객 통계분석 알고리즘', '맞춤형 정보 알고리즘'의 총 3개의 알고리즘 및 데이터분석 시스템을 개발했고, 개발된 애플리케이션과 데이터 분석 시스템을 통해 실제 축제장에서 베타테스트를 실시했다. 그 결과, 방문객 행태 DB 구축, 지역축제 방문객에게 Hot place 기능, 대기시간 기능, 맞춤형 정보제공의 서비스와 기능을 제공할 수 있었다. 또한, 출시 3개월 간 1만 3천 건 이상의 다운로드 실적 달성, 구글플레이스토어에 '축제' 관련 애플리케이션 중 노출 1위를 달성하는 등 지역 관광 축제 플랫폼으로서의 시장성과 우수성을 인정받았다. 본 연구는 다음과 같은 순서로 기술한다. 2장에서는 본 연구의 기술개발과 관련된 지역축제, 사물인터넷, 비콘 서비스, 축제 관련 애플리케이션의 선행연구를 살펴보고, 3장에서는 지역축제 모바일 애플리케이션 설계와 데이터 분석 시스템의 구현환경을 상세히 기술한다. 4장에서는 본 연구에서 개발한 모바일 애플리케이션과 데이터 분석 시스템이 제대로 적용되지는 실험하기 위해 베타테스를 실시하여 제품의 성능평가를 기술하고, 마지막으로 5장에서는 결론과 향후 연구과제에 대해 기술한다.