• Title/Summary/Keyword: Google Colab

검색결과 7건 처리시간 0.015초

중고차 가격 예측을 위한 영향요인 분석 (Influential factor analysis of used car price predicting)

  • 정재현;김민승;김종민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.694-696
    • /
    • 2022
  • 본 연구에서는 KIA의 K3 중고차 가격을 예측하기 위해 2013년부터 2021년까지 K Car 사이트에 등록된 자동차의 데이터를 사용하였으며, 상관분석에서 사용할 변수는 연식, 사고유무, 주행거리, 연료, 배기량을 사용하였다. 이 데이터를 토대로 상관관계를 분석하기 위해 Google Colab 플랫폼을 사용하였으며, 분석을 통해 중고차 가격에 대해 상관관계의 여부를 알 수 있었다.

  • PDF

태양광 발전량과 기상변수간 상관관계 분석 (Correlation Analysis between solar power generation and weather variables)

  • 유현재;공승준;김종민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.704-706
    • /
    • 2022
  • 본 연구에서는 태양광 발전량과 기상변화의 요소의 상관관계에 대해 분석하였다. 상관분석에서 활용한 데이터는 2018년 1월 부터 2020년 1월 까지의 총 52,561개를 사용하였으며, 상관분석에서 사용할 변수는 시간, 수평면 산란 일사량, 직달 일사량, 풍속, 상대습도, 기온을 사용하였다. 이 데이터를 토대로 상관관계를 분석하기 위해 Google Colab 플랫폼을 사용하였으며, 분석을 통해 태양광 발전량과 기상변화 요소의 상관관계의 여부를 알 수 있었다.

  • PDF

딥러닝 기술을 이용한 영상에서 흡연행위 검출 (Detection of Smoking Behavior in Images Using Deep Learning Technology)

  • 김동준;최유진;박경민;박지현;이재문;황기태;정인환
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.107-113
    • /
    • 2023
  • 본 논문은 인공지능 기술을 활용하여 영상에서 흡연 행위를 검출하는 방법을 제안한다. 흡연은 정적 현상이 아니라 행위에 해당하기 때문에 객체 탐지 기술에 행위를 탐지할 수 있는 자세 추정 기술을 접목하였다. 이미지에서 흡연자를 검출하기 위하여 흡연자 검출 학습 모델을 개발하였으며, 영상에서 흡연행위를 검출하기 위하여 흡연행위의 특성을 자세 추정 기술에 적용하였다. 객체 탐지를 위하여 YOLOv8을 사용하였으며, 자세 추정을 위하여 OpenPose를 이용하였다. 또한, 영상에 흡연자 및 비흡연자가 포함되어 있는 경우 사람들만 분리하는 방법도 적용하였다. 제안된 방법은 파이선으로 Google Colab NVIDEA Tesla T4 GPU를 사용구현 하였고, 테스트 결과 주어진 영상에서 흡연 행위를 완벽하게 검출함을 알 수 있었다.

CNN 기술을 적용한 침수탐지 학습모델 개발 (Development of a Flooding Detection Learning Model Using CNN Technology)

  • 김동준;최유진;박경민;박상준;이재문;황기태;정인환
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.1-7
    • /
    • 2023
  • 본 논문은 인공지능 기술을 활용하여 일반 도로와 침수 도로를 분류하는 학습모델을 개발하였다. 다양한 데이터 증강기법을 사용하여 학습 데이터의 다양성을 확장하며, 여러 환경에서도 좋은 성능을 보이는 모델을 구현하였다. CNN 기반의 Resnet152v2 모델을 사전 학습모델로 활용하여, 전이 학습을 진행하였다. 모델의 학습 과정에서 다양한 파라미터 튜닝 및 최적화 과정을 거쳐 최종 모델의 성능을 향상하였다. 학습은 파이선으로 Google Colab NVIDIA Tesla T4 GPU를 사용하여 구현하였고, 테스트 결과 시험 데이터 세트에서 매우 높은 정확도로 침수상황을 탐지함을 알 수 있었다.

Marine life Image Recognition using Deep Learning

  • Jiyun Hong;Jiwon Lee;Somin Lee;Eun Ko;Gyubin Kim;Jungwoon Kang;Mincheol Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권3호
    • /
    • pp.221-230
    • /
    • 2024
  • The aim of this study is to investigate the automatic recognition and analysis of Jeju marine-life images using artificial intelligence (AI) technology. The dataset of marine-life images was prepared using tools such as Python, TensorFlow, and Google Colab (Google Colaboratory). We also developed models by training deep learning AI in image recognition to automatically recognize the species found in these images and extract their associated information, such as taxonomy, characteristics, and distribution. This study is innovative in that it uses deep learning technology combined with imagerecognition technology for marine biodiversity research. In addition, these results will lead to the development of the marine-life industry in Jeju by supporting marine environment monitoring and marine resource conservation. Furthermore, this study is anticipated to contribute to academic advancement, specifically in the study of marine species diversity.

Comparing Results of Classification Techniques Regarding Heart Disease Diagnosing

  • AL badr, Benan Abdullah;AL ghezzi, Raghad Suliman;AL moqhem, ALjohara Suliman;Eljack, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.135-142
    • /
    • 2022
  • Despite global medical advancements, many patients are misdiagnosed, and more people are dying as a result. We must now develop techniques that provide the most accurate diagnosis of heart disease based on recorded data. To help immediate and accurate diagnose of heart disease, several data mining methods are accustomed to anticipating the disease. A large amount of clinical information offered data mining strategies to uncover the hidden pattern. This paper presents, comparison between different classification techniques, we applied on the same dataset to see what is the best. In the end, we found that the Random Forest algorithm had the best results.

Development of YOLO-based apple quality sorter

  • Donggun Lee;Jooseon Oh;Youngtae Choi;Donggeon Lee;Hongjeong Lee;Sung-Bo Shim;Yushin Ha
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.415-424
    • /
    • 2023
  • The task of sorting and excluding blemished apples and others that lack commercial appeal is currently performed manually by human eye sorting, which not only causes musculoskeletal disorders in workers but also requires a significant amount of time and labor. In this study, an automated apple-sorting machine was developed to prevent musculoskeletal disorders in apple production workers and to streamline the process of sorting blemished and non-marketable apples from the better quality fruit. The apple-sorting machine is composed of an arm-rest, a main body, and a height-adjustable part, and uses object detection through a machine learning technology called 'You Only Look Once (YOLO)' to sort the apples. The machine was initially trained using apple image data, RoboFlow, and Google Colab, and the resulting images were analyzed using Jetson Nano. An algorithm was developed to link the Jetson Nano outputs and the conveyor belt to classify the analyzed apple images. This apple-sorting machine can immediately sort and exclude apples with surface defects, thereby reducing the time needed to sort the fruit and, accordingly, achieving cuts in labor costs. Furthermore, the apple-sorting machine can produce uniform quality sorting with a high level of accuracy compared with the subjective judgment of manual sorting by eye. This is expected to improve the productivity of apple growing operations and increase profitability.