• Title/Summary/Keyword: Gonadal differentiation

Search Result 57, Processing Time 0.022 seconds

Gonad Ontogeny in Relation to Somatic Growth in the Brown Croaker Miichthys miiuy (Basilewsky) (민어, Miichtys miiuy (Basilewsky)의 성장과 연관된 생식소 발달)

  • Park, In-Seok;Seol, Dong-Won;Im, Soo-Yeon;Park, Min Ouk;Hur, Woo June;Cho, Sung Woan;Song, Young-Chae;Kim, Jea-Soo;Jo, Hyo-Jae;Noh, Choong Hwan;Choi, Hee Jung
    • Korean Journal of Ichthyology
    • /
    • v.19 no.2
    • /
    • pp.107-111
    • /
    • 2007
  • Sex differentiation of the brown croaker Miichthys miiuy (Basilewsky) is described from hatching to the 120th day post-hatching (dph) (water temperature $24^{\circ}C$). Primordial germ cells (PGCs) were observed on the 20th dph (10.4 mm total length (TL), 0.14 g body weight (BW), and began to protrude into the peritoneal cavity from the 40th dph (19.4 mm TL, 0.39 g BW). On the 65th dph (31.3 mm TL, 0.93 g BW, $1,560D^{\circ}$ (degree-days)), initial ovarian differentiation was identified by the PGCs with condensed chromatin, and their transformation into meiotic oocytes. By the 120th dph (4.60 mm TL, 1.38 g BW, $2,880D^{\circ}$), the oocytes were in the perinucleolus stage and had increased from 20 to $40{\mu}m$ in diameter. While ovaries gradually grew after sex was differentiated, testes continued to multiply from the 65th dph. On the 80th dph (37.9 mm TL, 1.39 g BW, $1,920D^{\circ}$), the beginning of testis lobule formation was indicated by the occurrence of spermatogonial cysts enveloped by somatic cells in some of the testes. On the 120th dph, the testis lobules of some of the fish contained all germ cell stages through to the spermatocytes. Therefore, the sex differentiation type of the brown croaker is identified as gonochoristic.

Expression of Neurotrophin 4 and Its Receptor Tyrosine Kinase B in Reproductive Tissues during the Follicular and Luteal Phases in Cows

  • Sun, Yongfeng;Li, Chunjin;Sun, Yanling;Chen, Lu;Liu, Zhuo;Ma, Yonghe;Wang, Chunqiang;Zhang, Wei;Zhou, Xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.336-343
    • /
    • 2011
  • The neurotrophins, required for the survival and differentiation of the nervous system, are known to be important for the development of the reproductive tissues. However, the signals initiating the growth of follicles, gamete development, and transport and the development of zygote in the reproductive system of cows remain ambiguous. The purpose of the present study was to identify the transcripts and proteins of Neurotrophin 4 (NT4) and its receptor tyrosine kinase B (TrkB) in bovine reproductive tissues. The transcripts and immunoreactivity of NT4 and TrkB proteins were detected by reverse transcription polymerase chain reaction and western blot analysis. Using immunohistochemistry, the specific immunoreactivity of NT4 and TrkB were detected in the oocytes of primordial follicles and in the growing primary follicles. The NT4 and TrkB immunoreactivity was predominantly observed in granulosa cells, cumulus granulosa cells, cumulus oocyte complexes, theca cells of mature follicles, as well as in the oviduct epithelial cells, uterine gland cell, and epithelium cells of the uterus during the follicular and luteal phases in cows. Expressions of NT4 and TrkB mRNAs were not significantly different among the ovary, oviduct, and uterus of the follicular phase. For the luteal phase, the expression of NT4 mRNA in the ovary was significantly higher than that in the oviduct and uterus, and the expression of TrkB mRNA in the oviduct was significantly higher than that in the ovary and uterus, as determined by fluorescence quantitative reverse transcription polymerase chain reaction. The expression of NT4 mRNA was significantly higher than that of TrkB mRNA in the ovary and uterus, whereas NT4 mRNA expression was lower than that of TrkB mRNA in the oviduct during the luteal phase. The present study hypothesizes that NT4 participates in the regulation of both gonads and extra-gonadal reproductive tissues in cows.

Effects of Estradiol-17β on the Feminization of Japanase Eel, Anguilla japonica (극동산 뱀장어, Anguilla japonica 자성화에 미치는 estradiol-17β 유도 효과)

  • Kim, Dae-Jung;Lee, Bae-Ik;Kim, Kyung-Kil;Kim, Eung-Oh;Son, Maeng-Hyun;Seong, Ki-Baik
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.998-1003
    • /
    • 2013
  • The effects of oral administration of estradiol-$17{\beta}$ (E2) on glass eels (Body weight: $0.16{\pm}0.05g$, Total length: $6.2{\pm}0.9cm$) and young eels (Body weight: $2.6{\pm}0.6g$, Total length: $13.2{\pm}0.6cm$) on gonadal sex and growth were examined, respectively. Glass eels were fed a diet containing E2 at a dose of 10 mg/kg or 25 mg/kg, respectively, for five months. The female ratio significantly increased in all E2-treated groups (10 mg/kg diet group: 70%; 25 mg/kg diet group: 90%) when compared to the control group (10%). Young eels were fed a diet containing E2 at a dose of 25 mg/kg for four months. The female ratio also significantly increased in the E2-treated groups (60%) compared to the control group (20%). The highest female ratio was observed in the stage of glass eels rather than young eels. In all experiments, however, the growth of eels treated with E2 was similar to that of controls to the end of the experiment. Thus, oral administration of E2 could be a good approach to controlling sex differentiation.

Reproductive Ecology and Spawning Behavior of the Natural Monumental and Endangered Species, Cobitis choii (Pisces: Cobitidae) in Geumgang (River), Korea (천연기념물이며 멸종위기종인 미호종개 Cobitis choii (Pisces: Cobitidae)의 번식생태 및 산란행동)

  • Myeong-Hun Ko;Il-Ro Lee;In-Chul Bang
    • Korean Journal of Ichthyology
    • /
    • v.36 no.3
    • /
    • pp.209-219
    • /
    • 2024
  • A survey was conducted in 2011 to investigate the reproductive ecology and spawning behavior of the natural monumental and endangered species, Cobitis choii. C. choii exhibits sexual dimorphism with the development of lamina circularis on the second pectoral fin ray in males at one year old, facilitating easy differentiation between males and females. A total of 1,288 females and 881 males were collected from January to December, resulting in a sex ratio of 1 : 0.68. The spawning season was estimated to be from late June to early July (spawning peak from late June, with water temperatures ranging from 22 to 25℃), coinciding with a sharp decrease in the condition index. Gonadal maturity was observed with maturity indices of 17.5±2.11% for females and 2.9±0.46% for males, with fecundity of 2,444±838 eggs and egg size of 0.75±0.05 mm. Spawning behavior was induced by hormone injection (Human Chorionic Gonadotropin, HCG) in laboratory conditions. Experimental results revealed that males and females paired in a 1 : 1 ratio before spawning. Males pressed the abdomen of females using their lamina circularis to induce spawning, followed by immediate fertilization. Spawning behavior was repeated 15 to 25 (average 20) times per pair of males and females, and 80 to 120 eggs were spawned per time, and the total amount of spawned eggs were 2,500±250 on average.

Gonadal Maturation and Spawning of River Puffer Takifugu obscurus Indoor Cultured in Low Salinity (저염분에서 사육한 황복 Takifugu obscurus 생식소의 성숙과 산란)

  • Kang, Hee-Woong;Chung, Ee-Yung;Kang, Duk-Young;Park, Young-Je;Jo, Ki-Che;Kim, Gyu-Hee
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.331-338
    • /
    • 2008
  • Monthly changes in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of wild river puffer Takifugu obscurus, and water quality environment in spawning area during breeding season were investigated from March 1995 to February 1996. Monthly changes in GSI and HSI of T. obscurus, that was cultured in low salinity, were calculated. The external morphology of the gonads, germ cell differentiation during gametogenesis and the reproductive cycle with the gonad developmental phases were investigated by histological analysis. The optimum water quality environment in Ganggyung, Choongcheongnam-do, where is spawning ground of wild T. obscurus, was $15-20^{\circ}C$ (water temperature) and 0 psu (salinity). Monthly changes in the GSI in females and males reached a maximum in May, and then rapidly decreased. Therefore, it is assumed that in the natural condition the spawning period of wild T. obscurus is May to June. In females and males, it showed a negative correlationship between the GSI and HSI. The external morphology of the gonads in female and male T. obscurus, that was cultured in low salinity, is composed of a pair of saccular structure. Based on monthly changes in the GSI, it is assumed that in female T. obscurus, that was cultured in low salinity, spawn from March through May. Therefore, it showed a negative correlationship between changes in the GSI and HSI. On the whole, in females and males, it showed a similar pattern between wild and cultured T. obscurus. The reproductive cycle with the gonad developmental phases can be classified into successive five stages in females: the early growing stage, late growing stage, mature stage, ripe and spent stage, and recovery and resting stage. In males, that can be divided into successive four stages: the growing stage, mature stage, ripe and spent stage, and recovery and resting stage. In case of wild T. obscurus, the spawning period has once a year, however, those cultured in the high water temperature ($20-27^{\circ}C$) - low salinity (under 3.3 psu) condition have reproductive characteristics having possibilities of discharge of eggs and sperms year-round as a multiple spawner.

Monocentric Derivative Y Chromosome with Duplication of the SRY Gene in an Azoospermic Male (무정자증 불임남성에서 관찰된 SRY 유전자의 중복을 동반한 일동원체성 derivative Y 염색체)

  • Choi, Eun-Young;Lee, Bom-Yi;Park, Ju-Yeon;Lee, Yeon-Woo;Oh, Ah-Rum;Lee, Shin-Young;Kim, Shin-Young;Han, You-Jung;Lee, Mee-Bum;Ryu, Hyun-Mee;Seo, Ju-Tae;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.160-164
    • /
    • 2010
  • Structural abnormalities of the Y chromosome affect normal testicular differentiation and spermatogenesis. The present case showed a rare monocentric derivative Y chromosome with partial duplication of Yp including the SRY gene and deletion of Yq12 heterochromatin. The karyotype was 46,X,der(Y)(pter${\rightarrow}$q11.23::p11.2${\rightarrow}$pter).ish der(Y)(DYZ3+,DYZ1-,SRY++), confirmed through a FISH study. Even though the patient possessed an abnormal Y chromosome, testicular biopsy showed normal testicular volumes in the proband, with gonadal hormonal levels in the normal range but bilateral varicocele and hypospermatogenesis. We speculate that the abnormal Y chromosome arose from sister chromatids during Y chromosome recombination or intra chromosomal NAHR (non-allelic homologous recombination) during meiosis in the patient's father or in the very early stages of embryogenesis. The derivative Y chromosome might interfere in the meiotic stage of spermatogenesis, leading to the developmental arrest of germ cells. The present case illustrates that the infertility phenotype can have various causes. Also, it emphasizes the importance of accurate and various genetic analyses and could aid in male infertility treatment.

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF