• Title/Summary/Keyword: Gompertz Model

Search Result 158, Processing Time 0.022 seconds

Mathematical Description of Seedling Emergence of Rice and Echinochloa species as Influenced by Soil burial depth

  • Kim Do-Soon;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.362-368
    • /
    • 2006
  • A pot experiment was conducted to investigate the effects of soil burial depth on seedling emergences of rice (Oryza sativa) and Echinochloa spp. and to model such effects for mathematical prediction of seedling emergences. When the Gompertz curve was fitted at each soil depth, the parameter C decreased in a logistic form with increasing soil depth, while the parameter M increased in an exponential form and the parameter B appeared to be constant. The Gompertz curve was combined by incorporating the logistic model for the parameter C, the exponential model for the parameter M, and the constant for the parameter B. This combined model well described seedling emergence of rice and Echinochloa species as influenced by soil burial depth and predicted seedling emergence at a given time after sowing and a soil burial depth. Thus, the combined model can be used to simulate seedling emergence of crop sown in different soil depths and weeds present in various soil depths.

A Study on the Revitalization Pattern of Industry in Decline: Focusing on Korean Shoe Industry

  • LEE, Kang-Sun;CHOI, Kyu-Jin;KANG, Sung-Wook;CHO, Dae-Myeong
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.10 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • Purpose - This study aims to study the activation pattern of declining industries by applying the Gompertz growth model using available resources based on the theory of industrial life cycle, classifying declining industries among Korean manufacturing industries, and identifying resource input characteristics. Research design and methodology - This study was conducted by combining the Gompertz growth model that predicts the limit of output based on available resources under the industrial life cycle theory. Using Gompertz model, this study analyzed the life cycle of 39 Korean manufacturing industries from the perspective of domestic production, number of employees, and fixed assets Results - According to a life cycle analysis of 39 manufacturing industries in Korea, the computer, textile, and shoe industries were classified as declining industries. Among them, research on resource input characteristics on the shoe industry showed that domestic production and the number of employees decreased, while the proportion of domestic R&D personnel and the number of research departments gradually increased. Conclusion - Among the declining industries in Korea, the shoe industry is considered to revitalize the industry, that is, to extend the life of the declining industry by offshoring its production site and improving constitution with a "R&D center for global" support.

Analysis of the Corporate Life Cycle using the Gompertz Model Focused on Korean Pharmaceutical Longevity Companies

  • Kyu-Jin, CHOI;Kang-Sun, LEE;Sung-Wook, KANG;Dae-Myeong, CHO
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.1
    • /
    • pp.31-44
    • /
    • 2023
  • Purpose: This study aims to figure out the characteristics of corporate life cycle and resource input in terms of the sustainability diagnosis of pharmaceutical companies in Korea. Research design, data, and methodology: Using the Gompertz model under the assumption that companies have finite resources, this study tries quantitative interpretation of life cycle and resource input pattern for longevity companies with 25 years of experience among 158 pharmaceutical companies listed on Korean stock market based on maturity of revenue. Results: The study found revenue maturity through Gompertz model was statistically correlated with enterprise value. According to the life cycle analysis, more than 95% of 59 pharmaceutical companies were in the growth and maturity phase and have an average life cycle of 88 years and an average remaining life of 52 years. Regarding maturity profile of resource input, maturity of employees was generally high more than 60% and this meant there was jobless growth in Korean pharmaceutical industry. Conclusion: This study demonstrated there is a high statistical correlation between the maturity of a company's resource input and its revenue and enterprise value. It is believed that these results could be utilized as a basis for high fidelity function that predict revenue and enterprise value based on resource input information.

Modeling Growth of Canopy Heights and Stem Diameters in Soybeans at Different Groundwater Level (지하 수위가 다른 조건에서 콩의 초장과 경태 모델링)

  • Choi, Jin-Young;Kim, Dong-Hyun;Kwon, Soon-Hong;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.395-404
    • /
    • 2017
  • Cultivating soybeans in rice paddy field reduces labor costs and increases the yield. Soybeans, however, are highly susceptible to excessive soil water in paddy field. Controlled drainage system can adjust groundwater level (GWL) and control soil moisture content, resulting in improvement soil environments for optimum crop growth. The objective of this study was to fit the soybean growth data (canopy height and stem diameter) using Gompertz model and Logistic model at different GWL and validate those models. The soybean, Daewon cultivar, was grown on the lysimeters controlled GWL (20cm and 40cm). The soil textures were silt loam and sandy loam. The canopy height and stem diameter were measured from the 20th days after seeding until harvest. The Gompertz and Logistic models were fitted with the growth data and each growth rate and maximum growth value was estimated. At the canopy height, the $R_2$ and RMSE were 0.99 and 1.58 in Gompertz model and 0.99 and 1.33 in Logistic model, respectively. The large discrepancy was shown in full maturity stage (R8), where plants have shed substantial amount of leaves. Regardless of soil texture, the maximum growth values at 40cm GWL were greater than the value at 20cm GWL. The growth rates were larger at silt loam. At the stem diameter, the $R_2$ and RMSE were 0.96 and 0.27 in Gompertz model and 0.96 and 0.26 in Logistic model, respectively. Unlike the canopy height, the stem diameter in R8 stage didn't decrease significantly. At both GWLs, the maximum growth values and the growth rates at silt loam were all larger than the values at sandy loam. In conclusion, Gompertz model and Logistic model both well fit the canopy heights and stem diameters of soybeans. These growth models can provide invaluable information for the development of precision water management system.

A Study on Technological Forecasting of Next-Generation Display Technology (차세대 디스플레이 기술의 예측에 관한 연구)

  • Nam, Ki-Woong;Park, Sang-Sung;Shin, Young-Geun;Jung, Won-Gyo;Jang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2923-2934
    • /
    • 2009
  • This paper presents study on technological forecasting of Next-Generation Display technology. Next-Generation Display technology is one of the emerging technologies lately. So databases on patent documents of this technology were analyzed first. And patent analysis was performed for finding out present technology trend. And the forecast for this technology was made by growth curves which were obtained from forecast models using patent documents. In previous study, Gompertz, Logistic, Bass were used for forecasting diffusion of demand in market. Gompertz, Logistic models which were often used for technological forecasting, too. So, two models were applied in this study. But Gompertz, Logistic models only consider internal effect of diffusion. And it is difficult to estimate maximum value of growth in two models. So, Bass model which considers both internal effect and external effect of diffusion was also applied. And maximum value of growth in Gompertz, Logistic models was estimated by Bass model.

Estimation of Diameter and Height Growth Equations Using Environmental Variables (환경인자를 이용한 직경 및 수고생장 모형 추정)

  • Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.351-356
    • /
    • 2009
  • This study purposed to judge potential possibility of building highly precise empirical model using environmental variables. Environmental variables such as altitude, mean annual rainfall, mean annual temperature and organic matter ratio of soil were added to height and diameter model for Chamaecyparis obtusa, and examined accuracy and residuals of prediction model. Improvement in precision was found for the Gompertz polymorphic height model by including mean temperature and altitude as independent variables, while the Gompertz diameter model with annual rainfall and altitude was showed improvement of precision and accuracy. Comparing the improvement of precision between the model before adding environmental variables and the model after adding them, an improvement or some ratio was obtained though it is not obvious. Therefore, there is enough proof that adding environmental variables, which can be easily acquired relatively when considering the difficulties of measurement and budget, into the model as independent variables would improve the accuracy and precision of growth models.

A Study on the Numerical Approach for Industrial Life Cycle: Empirical Evidence from Korea

  • LEE, Kangsun;CHOI, Kyujin;CHO, Daemyeong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.667-678
    • /
    • 2021
  • The industrial life cycle theory was extended to the product life cycle theory and the corporate life cycle theory, but a conceptual life cycle was presented, and quantitative empirical evidence for this was insufficient. It is intended to improve appropriate resource planning and resource allocation by quantitatively predicting the industrial cycle and its position (age) in the cycle. Human resources, tangible assets, and industrial output analysis were conducted based on 28 years of actual data of 39 industries in Korea by applying the Gompertz model, which is a population ecology prediction model. By predicting with the Gompertz model, the coefficient of determination R2 value was 97% or more, confirming the high suitability with the actual cumulative sales value of the industry. A numerical model for calculating the life cycle of each industry, calculating the saturation of input resources for each industry, and diagnosing the financial stability of the industry was presented. These results will contribute to the decision-making of industrial policy officers for budget planning appropriately for each stage of industry development. Future research will apply the numerical model of this study to foreign national industries, complete an inter-industry convergence diagnostic model (e.g. ease of convergence, suitability of convergence, etc.) for renewal of fading industries.

Predictive Growth Model of Native Isolated Listeria monocytogenes on raw pork as a Function of Temperature and Time (온도와 시간을 주요 변수로 한 냉장 돈육에서의 native isolated Listeria monocytogenes에 대한 성장예측모델)

  • Hong, Chong-Hae;Sim, Woo-Chang;Chun, Seok-Jo;Kim, Young-Su;Oh, Deog-Hwan;Ha, Sang-Do;Choi, Weon-Sang;Bahk, Gyung-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.850-855
    • /
    • 2005
  • Model was developed to predict the growth of Listeria monocytogenes in raw pork. Experiment condition for model development was full 5-by-7 factorial arrangements of temperature (0, 5, 10, 15, and $20^{\circ}C$) and time (0, 1, 2, 3, 18, 48, and 120 hr). Gompertz values A, C, B, and M, and growth kinetics, exponential growth rate (EGR), generation time (GT), lag phase duration (LPD), and maximum population density (MPD) were calculated based on growth increased data. GT and LPD values gradually decreased, whereas EGR value gradually increased with increasing temperature. Response surface analysis (RSA) was carried out using Gompertz B and M values, to formulate equation with temperature being main control factor. This equation was applied to Gompertz equation. Experimental and predictive values for GT, LPD, and EGR, compared using the model, showed no significant differences (p<0.01). Proposed model could be used to predict growth of microorganisms for exposure assessment of MRA, thereby allowing more informed decision-making on potential regulatory actions of microorganisms in raw pork.

Estimation of growth curve in Hanwoo steers using progeny test records

  • Yun, Jae-Woong;Park, Se-Yeong;Park, Hu-Rak;Eum, Seung-Hoon;Roh, Seung-Hee;Seo, Jakyeom;Cho, Seong-Keun;Kim, Byeong-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.623-633
    • /
    • 2016
  • A total of 6,973 steer growth records of Hanwoo breeding bull's progeny test data collected from 1989 to 2015 were analyzed to identify the most appropriate growth curve among three growth curve models (Gompertz, Logistic and von Bertalanffy). The Gompertz growth curve model equation was $W_t=990.5e^{{-2.7479e}^{-0.00241t}}$, the Logistic growth curve model equation was $W_t=772(1+8.3314e^{-0.00475t})^{-1}$, and the von Bertalanffy growth curve model equation was $W_t=1,196.4(1-0.646e^{-0.00162t})^3$. The Gompertz model parameters A, b, and k were estimated to be $990.5{\pm}10.27$, $2.7479{\pm}0.0068$, and $0.00241{\pm}0.000028$, respectively. The inflection point age was estimated to be 421 days and the weight of inflection point was 365.3 kg. The Logistic model parameters A, b, and k were estimated to be $772.0{\pm}4.12$, $8.3314{\pm}0.0453$, and $0.00475{\pm}0.000033$, respectively. The inflection point age was estimated to be 445 days and the weight of inflection point was 385.0 kg. The von Bertalanffy model parameters A, b, and k were estimated to be $1196.4{\pm}18.39$, $0.646{\pm}0.0010$, and $0.00162{\pm}0.000027$, respectively. The inflection point age was estimated to be 405 days and the weight of inflection point was 352.0 kg. Mature body weight of the von Bertalanffy model was 1196.4 kg, the Gompertz model was 990.5 kg, and the Logistic model was 772.0 kg. The difference between actual and estimated weights was similar in the Logistic model and the von Bertalanffy model. The difference between market weight and estimated market weight was the lowest in the Gompertz model. The growth curve using the von Bertalanffy model showed the lowest mean square error.

Predictive Model for Growth of Staphylococcus aureus in Suyuk (수육에서의 Staphylococcus aureus 성장 예측모델)

  • Park, Hyoung-Su;Bahk, Gyung-Jin;Park, Ki-Hwan;Pak, Ji-Yeon;Ryu, Kyung
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.487-494
    • /
    • 2010
  • Cooked pork can be easily contaminated with Staphylococcus aureus during carriage and serving after cooking. This study was performed to develop growth prediction models of S. aureus to assure the safety of cooked pork. The Baranyi and Gompertz primary predictive models were compared. These growth models for S. aureus in cooked pork were developed at storage temperatures of 5, 15, and $25^{\circ}C$. The specific growth rate (SGR) and lag time (LT) values were calculated. The Baranyi model, which displayed a $R^2$ of 0.98 and root mean square error (RMSE) of 0.27, was more compatible than the Gompertz model, which displayed 0.84 in both $R^2$ and RMSE. The Baranyi model was used to develop a response surface secondary model to indicate changes of LT and SGR values according to storage temperature. The compatibility of the developed model was confirmed by calculating $R^2$, $B_f$, $A_f$, and RMSE values as statistic parameters. At 5, 15 and $25^{\circ}C$, $R^2$ was 0.88, 0.99 and 0.99; RMSE was 0.11, 0.24 and 0.10; $B_f$ was 1.12, 1.02 and 1.03; and $A_f$ was 1.17, 1.03 and 1.03, respectively. The developed predictive growth model is suitable to predict the growth of S. aureus in cooked pork, and so has potential in the microbial risk assessment as an input value or model.