• Title/Summary/Keyword: Golgi-tendon organ

Search Result 9, Processing Time 0.026 seconds

A Study of Manipulative Treatments for Musculoskeletal Problems Applying Proprioceptive Spinal Reflex (고유수용성 척수 반사(proprioceptive spinal reflex)를 응용한 근골격계 치료 기법의 고찰)

  • Ko, Eun-Sang;Lee, Jong-Hwa;Song, Yun-Kyung
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.1 no.2
    • /
    • pp.81-92
    • /
    • 2006
  • Objectives: To review recent findings from physiologic research about the nature of proprioceptive spinal reflex, proposed explanation for mechanisms of musculoskeletal problems associated with propriceptive dysfunction and techniques controlling this problem. Methods: MEDLINE databases were searched using various combinatins of the keywords proprioception, spinal reflex, somata-somatic reflex, spinal manipulation, muscle spindle, Golgi-tendon organ, along with searching the related articles and textbooks. Results and Conclusion: Proprioceptors(muscle spindle, Golgi-tendon organs) monitor the position of joints, tension in tendons and ligaments, and the state of muscular contraction. Disturbed activity of proprioceptive spinal reflex can cause chronic state of increased muscle stiffness, pain, deficiencies both in muscle coordination and propioception, and so on. All kinds of techniques that control proprioceptive primary afferent neurons can affect the motor control system and evoke changes in the neuromuscular system.

  • PDF

Influence of Vibration on Golgi Tendon Organ and Hold-Relax of PNF on Muscular Activity and Gait Factors on Delayed Onset Muscle Soreness

  • Jun, Hyun ju;Yang, Hoe Song;Yoo, Young Dae;Park, So Hui;Jegal, Hyuk;Jeong, Chan Joo
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.2
    • /
    • pp.859-864
    • /
    • 2015
  • The purpose of this study was to investigate the effects of vibration on Golgi tendon organ(GTO) and Hold-Relax of PNF in muscular activity and gait factors on Delayed Onset Muscle Soreness(DOMS). This study was conducted on 20 subjects. they were divided into two groups; Hold-Relax of PNF(n=10), Vibration on GTO(n=10). Both of the group was performed interventions 1 times a day for 3 days. The data was analyzed by the repeated-ANOVA for comparing before, after 24h and after 48h changes of factors in each group and the Independent t-test for comparing the between groups. The results are as follows. There was statistically significant difference of before, after 24h and after 48h vibration on GTO group and Hold-Relax of PNF group in muscular activity and gait factors on DOMS.(p<0.05). There was no statistically significant difference of between vibration on GTO group, but there was statistically significant difference Hold-Relax of PNF group in EMG, step width, step length, stride length(p>0.05). As a results of this study, Hold-Relax of PNF group are effective in improving muscular activity and gait factors.

Effects of Joint Mobilization Techniques on the Joint Receptors (관절 가동운동(mobilization)이 관절 감수기(joint receptors)에 미치는 영향)

  • Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 1996
  • Type I, II, III are regarded as "true" joint receptors, type IV is considered a class of pain receptor. Type I, II and III mechanoreceptors, via static and dynamic input, signal joint position, intraarticular pressure changes, and the direction, amplitude, and velocity of joint movements. Type I mechanoreceptor subserve both static and dynamic physiologic functions. Type I are found primarily in the stratum fibrosum of the joint capsule and ligaments. Type I receptors have a low threshold for activation and are allow to adapt to changes altering their firing frequency. Type II receptors have a low threshold for activation. These dynamic receptors respond to joint movement. Type II receptors are thus termed rapidly adapting. Type II joint receptors are located at the junction of the synovial membrane and fibrosum of the joint capsule and intraarticular and extraarticular fat pads. Type III receptors have been found in collateral ligaments of the joints of the extremities. Morphologically similar to Golgi tendon organ. These dynamic receptors have a high threshold to stimulation and are slowly adating. Type IV receptors possess free nerve ending that have been found in joint capsule and fat pads. They are not normally active, but respond to extreme mechanical deformation of the joint as well as to direct chemical or mechanical irritation. Small amplitude oscillatory and distraction movements(joint mobilization) techniques are used to stimulate the mechanoreceptors that may inhibit the transmission of nociceptors stimuli at the spinal cord or brain stem levels.

  • PDF

The Effects of Knee Sleeve with a Stimulation of Golgi Tendon Organ on One Leg Standing and Proprioception (무릎 슬리브 착용과 골지 건 기관 자극이 한 발 서기 동작과 고유수용성 감각에 미치는 영향)

  • Jeong, BoRa;Chang, YoonHee;Kim, GyuSeok;Ryu, JeiCheong;Ko, Chang-Yong
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • Knee sleeve has been used for prevention of sport injuries as well as rehabilitation. To investigate prevention of sport injuries of knee sleeve, it is important to evaluate balance associated with proprioception. The aim of this study was to evaluate the effects of a knee sleeve with a pad that stimulate to golgi tendon organ (GTO_PAD) on proprioception and balance ability. Five healthy males were participated for the study. They were asked to reenact target angle with Biodex and perform one leg standing with knee sleeve and knee sleeve with GTO_PAD. There was no significant difference in %Target angle, but the value of %Target angle was higher in subjects wearing knee sleeve with GTO_PAD than only knee sleeve, except for one subject. During one leg standing, time duration was increased in subjects wearing knee sleeve with GTO_PAD. The length of center of pressure in x-axis (COPx) and COP in y-axis (COPy) were decreased when wearing knee sleeve with GTO_PAD (COPx : $162.06{\pm}58.99mm$ in knee sleeve vs. $149.03{\pm}45.30mm$ in knee sleeve with GTO_PAD, COPy : $310.79{\pm}115.89mm$ in knee sleeve, $291.57{\pm}76.53mm$ in knee sleeve with GTO_PAD). There was significant differences in INI_transition, steady, and LAT_transition phase (all, p < 0.05). These findings support that wearing knee sleeve with GTO_PAD might enhance proprioception and balance.

Effects of Joint Mobilization Techniques on the Joint Receptors (관절 가동운동이 관절 감수기에 미치는 영향)

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.9-19
    • /
    • 1996
  • Type I, II, III are regarded as "true" joint receptors, type IV is considered a class of pain receptor. Type I, II and III mechanoreceptors, via static and dynamic input, signal joint position, intraarticular pressure changes, and the direction, amplitude, and velocity of joint movements. Type I mechanoreceptor subserve both static and dynamic physiologic functions. Type I are found primarily in the stratum fibrosum of the joint capsule and ligaments. Type I receptors have a low threshold for activation and are allow to adapt to changes altering their firing frequency. Type II receptors have a low threshold for activation. These dynamic receptors respond to joint movement. Type II receptors are thus termed rapidly adapting. Type II joint receptors are located at the junction of the synovial membrane and fibrosum of the joint capsule and intraarticular and extraarticular fat pads. Type III receptors have been found in collateral ligaments of the joints of the extremities. Morphologically similar to Golgi tendon organ. These dynamic receptors have a high threshold to stimulation and are slowly adating. Type IV receptors possess free nerve ending that have been found in joint capsule and fat pads. They are not normally active, but respond to extreme mechanical deformation of the joint as well as to direct chemical or mechanical irritation. Small amplitude oscillatory and distraction movements(joint mobilization) techniques are used to stimulate the mechanoreceptors that may inhibit the transmission of nociceptors stimuli at the spinal cord or brain stem levels.

  • PDF

Recording and Analysis of Peripheral Nerve Activity Using Multi-Electrode Array (다채널 신경전극 어레이를 이용한 말초 신경신호의 측정 및 분석)

  • Chu, Jun-Uk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • Reliable recording and analysis of peripheral nerve activity is important to recognize the user's intention for controlling a neuro-prosthetic hand. In this paper, we present a peripheral nerve recording system that consisted of an intrafascicular multi-electrode array, an electrode insertion device, and a multi-channel neural amplifier. The 16 channel multi-electrode array was stably implanted into the sciatic nerve of the rat under anesthesia using the electrode insertion device. During passive movements and mechanical stimuli, muscle and cutaneous afferent signals were recorded with the multi-channel neural amplifier. Furthermore, we propose a spike sorting method to isolate individual neuronal unit. The muscle proprioceptive units were classified as muscle spindle afferents or Golgi tendon organ afferents, and the skin exteroceptive units were categorized as slow adapting afferents or fast adapting afferents. Experimental results showed that the proposed method could be applicable to record and analyze peripheral nerve activity in neuro-prosthetic systems.

Effects of High-heel Shoes on EMG Activities of Rectus Femoris and Biceps Femoris (신발 굽의 높이와 신발착용기간이 대퇴근육 활동량에 미치는 영향)

  • Park, Eun-Young;Kim, Won-Ho;Kim, Gyoung-Mo;Cho, Sang-Hyun
    • Physical Therapy Korea
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1999
  • This study was conducted to identify the effects of high-heel shoes on EMG activities of rectus femoris and biceps femoris in 28 healthy women. Subjects were composed of experimental group (wearing high-heel shoes) and control group (wearing low-heel shoes). Two groups participated in three conditions standing (bare foot wearing athletic shoes and 7.5 cm height shoes). In high-heel shoes condition, EMG activities of rectus femoris of control group were significantly lower than that of biceps femoris of experimental group, but EMG activities of both muscles of experimental group did not should significant difference. In bare foot standing condition, EMG activities of rectus femoris of experimental group were significantly lower than that of biceps femoris but EMG activities of both muscles of control group had no significant difference. These results showed that hamstring lengthening effects was produced when wearing high-heel shoes because the external knee extension moment was increased. In the short term, high-heel shoes effect on the increase of the biceps femoris activities by spindle reflex, but in the long term, the normal amplitude of the same muscle activities by Golgi tendon organ reflex.

  • PDF

Analysis of Osteopathic Manipulation and Study on Relationship with Chuna Manual Therapy for Meridian Sinew System (정골의학적(Osteopathic) 수기요법 분석 및 경근추나와의 관련성 연구)

  • Kweon, Jeong-Ju;Lim, Hyung-Ho;Song, Yun-Kyung
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.171-188
    • /
    • 2011
  • Objectives : The aim of this study is to analyze the actual investigation and classification of osteopathic manipulation by investigation of the various literature of the inside and outside of the country, and to present the application plan of osteopathy in chuna manual therapy for meridian sinew system. Methods : I referred to the domestic and foreign books about osteopathy and chiropractic. In order to investigate domestic dissertations, I searched 4 Korean medical databases and 4 Korean medical journals of osteopathy. Search terms used were osteopathy, osteopathic, fascia, proprioreceptor, mechanoreceptor, muscle spindle, golgi tendon organ, osteopathic manipulation technics. And I classified all the searched studies into principle and region and etc. In order to investigate foreign dissertations, I search 'NCBI pubmed'. Search terms used were osteopathy, osteopathic technique, osteopathic manipulative technique. Results : 1. Osteopathy do not regard the systems which compose the human body in individual territory, but regard whole. It is diagnosis, prevention and medicine which treats 2. Osteopathic manipulation techniques are classified into direct techniques, indirect techniques, and compound techniques. 3. Osteopathic manipulation techniques are classified into fascia, muscle, ligament-joint in applied region. 4. I could search clinical cases in domestic and foreign study. I found cases about myofascial release technique(MFR), postisometric relaxation(PIR), proprioceptive neuromuscular fascilitation(PNF), muscle energy technique(MET), joint mobilization in domestic studies, and strain-counterstrain technique(SCS), MET, AK in foreign studies. Conclusions : Osteopathic manipulation techniques can be used in diagnosis and treatment of meridian muscle theory, because osteopathy and the oriental medicine have many similarities in theoretical background. So osteopathic manipulation technique can be useful in oriental medicine treatment techniques.

Effects of Gastrocnemius Stretching on α-Motor Neuron Excitability and Ankle Joint Active Dorsiflexion Range of Motion (비복근 스트레칭이 α-운동 신경원 흥분도와 족관절 능동 배측굴곡 가동범위에 미치는 영향)

  • Kim, Jong-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.278-286
    • /
    • 2009
  • The aims of this study were to determined whether excitability of the $\alpha$-motor neuron is modulated by stretching and this changes were associated with flexibility of the muscle. In this study, $\alpha$-motor neuron excitability was measured by using the Hmax/Mmax ratio of the gastrocnemius H-reflex, and muscle flexibility was measured with the range of motion of the ankle dorsiflexion. The gastrocnemii of 10 healthy volunteers were stretched for 4 minutes(2 minutes stretching, 1 minute rest, and 2 minutes stretching) in each session by manual force. The Hmax/Mmax ratio of the H-reflex, as well as the range of motion of the ankle dosiflexion was measured through four different conditions: before stretching, as soon as after $1^{st}$ stretching, as soon as after $2^{nd}$ stretching and at 48 hours after $2^{nd}$ stretching. Excitability of the $\alpha$-motor neuron was decreased significantly after $1^{st}$ and $2^{nd}$ stretching(p<0.05). Furthermore, the range of the dorsiflexion was increased significantly after $1^{st}$ and $2^{nd}$ stretching(p<0.05). However, the excitability of the $\alpha$-motor neuron and range of the dorsiflexion at 48 hours after $2^{nd}$ stretching were not different from those of before stretching. These results suggest that reduced $\alpha$-motor neuron excitability of the gastrocnemius and increased flexibility of the ankle dorsiflexion would be followed by activation of the type III mechanoreceptor which around the ankle joint and the Golgi tendon organ in the gastrocnemius.