• Title/Summary/Keyword: Golgi membrane

Search Result 118, Processing Time 0.028 seconds

Fine structure of the silk spinning system in the caddisworm, Hydatophylax nigrovittatus (Trichoptera: Limnephilidae)

  • Hyo-Jeong Kim;Yan Sun;Myung-Jin Moon
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.16.1-16.11
    • /
    • 2020
  • Silk is produced by a variety of insects, but only silk made by terrestrial arthropods has been examined in detail. To fill the gap, this study was designed to understand the silk spinning system of aquatic insect. The larvae of caddis flies, Hydatophylax nigrovittatus produce silk through a pair of labial silk glands and use raw silk to protect themselves in the aquatic environment. The result of this study clearly shows that although silk fibers are made under aquatic conditions, the cellular silk production system is quite similar to that of terrestrial arthropods. Typically, silk production in caddisworm has been achieved by two independent processes in the silk glands. This includes the synthesis of silk fibroin in the posterior region, the production of adhesive glycoproteins in the anterior region, which are ultimately accumulated into functional silk dope and converted to a silk ribbon coated with gluey substances. At the cellular level, each substance of fibroin and glycoprotein is specifically synthesized at different locations, and then transported from the rough ER to the Golgi apparatus as transport vesicles, respectively. Thereafter, the secretory vesicles gradually increase in size by vesicular fusion, forming larger secretory granules containing specific proteins. It was found that these granules eventually migrate to the apical membrane and are exocytosed into the lumen by a mechanism of merocrine secretion.

Specific Interaction of Rat Vanilloid Receptor, TRPV1 with Rab11-FIP3 (Rat 바닐로이드 수용체 TRPV1과 Rab11-FIP3의 특이적 결합)

  • Lee, Soon-Youl;Kim, Mi-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.312-317
    • /
    • 2011
  • Vanilloid receptor TRPV1 (known as capsaicin channel, transient receptor potential vanilloid 1) is known to be a key protein in the pain signal transduction. However, the proteins controlling the activity of the channel are not much known yet. Recently mouse Rab11-FIP3 (Rab11-family interaction protein 3) was found and reported to interact with rat TRPV1. Rab11 has been shown to play a key role in a variety of cellular processes including plasma membrane recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. Therefore, Rab11-FIP3 was proposed to be involved in the membrane trafficking of TRPV1. In this study, the unreported rat Rab11-FIP3 was yet cloned in order to show the specific interaction of the TRPV1 and Rab11-FIP3 in the same species of rat and to examine the membrane trafficking of TRPV1. The result showed that rat Rab11-FIP3 is expected to have 489 amino acids and showed 80% identity with that of human and over 90% identity with that of mouse. Rab11-FIP3 was found to be expressed in heart, brain, kidney, testis using northern and western blot analyses. We also found that rat Rab11-FIP3 was colocalized with rat TRPV1 but not with TRPV2 of same family in the rat brain by using immunohistochemistry showing that two proteins interact specifically, suggesting the role of Rab11-FIP3 in the membrane trafficking.

Morphometrical, Histological and Electron Microscopical Comparison of Left and Right Kidney in Uninephrectomized Rat (백서(白鼠) 편측(片側) 신장절제(腎臟切除) 후(後) 좌신(左腎)과 우신(右腎)의 조직학적(組織學的) 및 전자현미경적(電子顯微鏡的) 관찰(觀察)과 형태계측학적(形態計測學的) 비교(比較) 연구(硏究))

  • Lee Kyung-Tae;Song Choon-Ho
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.43-60
    • /
    • 1998
  • This study examined the histomorphomeric and histological changes of the left and right kidney in uninephrectomized rat. The results were as follows: 1. In the control, the right kidney was more prominent than the left in the basement membrane of glomerular capillaries. The podocyte had well developed Golgi apparatus in the left kidney and rough endoplasmic reticulum in the right kidney. 2. At the 30 days after unilateral nephrectomy, the basal lamina of glomerular capillaries was prominently thickened in the right kidney. The cytoplasm of the podocyte of the left kidney was markedly increased and had free ribosomes, developed Golgi apparatus and rough endoplasmic reticulum. 3. At the 30 days, the section of the glomeruli were more enlarged in the left kidney than in the right. 4. At the 20 day, the nuclear section of the podocytes were markedly enlarged in the right kidney, but those of the left kidney were diminished. The mitochondrial section of the podocytes were prominently increased in the right kidney. 5. The nuclear section of the parietal layer lining cells was no significant change in the right kidney. That of the left kidney was increased at the 20 days and decreased at the 40 days. The nuclear section of glomerular endothelium of the left kidney increased earlier than the right. 6. In the morphometry of the control kidney, the section areas, long and short diameters, the nuclear section, the mitochondrial section of the proximal tubule cells, and the changes of those were more large in the right kidney than in the left. 7. The luminal secretory vesicles and peroxisomes of the left kidney were more than the right at the 20 days. The increase of mitochodrial section in the proximal tubule cells of the left kidney was more prominent than the right. The large cytoplasmic vacuoles were more prominent in the left kidney than in the right. 8. The thickness of cytoplasm and brush border was more thick in the control left kidney than in the control right. The change of cytoplasmic thickness of the left kidney was increased earlier than in the right and both kineys were increased in the thickness of brush border at the 30 days.

  • PDF

Effects of Joint Mobilization Techniques on the Joint Receptors (관절 가동운동(mobilization)이 관절 감수기(joint receptors)에 미치는 영향)

  • Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 1996
  • Type I, II, III are regarded as "true" joint receptors, type IV is considered a class of pain receptor. Type I, II and III mechanoreceptors, via static and dynamic input, signal joint position, intraarticular pressure changes, and the direction, amplitude, and velocity of joint movements. Type I mechanoreceptor subserve both static and dynamic physiologic functions. Type I are found primarily in the stratum fibrosum of the joint capsule and ligaments. Type I receptors have a low threshold for activation and are allow to adapt to changes altering their firing frequency. Type II receptors have a low threshold for activation. These dynamic receptors respond to joint movement. Type II receptors are thus termed rapidly adapting. Type II joint receptors are located at the junction of the synovial membrane and fibrosum of the joint capsule and intraarticular and extraarticular fat pads. Type III receptors have been found in collateral ligaments of the joints of the extremities. Morphologically similar to Golgi tendon organ. These dynamic receptors have a high threshold to stimulation and are slowly adating. Type IV receptors possess free nerve ending that have been found in joint capsule and fat pads. They are not normally active, but respond to extreme mechanical deformation of the joint as well as to direct chemical or mechanical irritation. Small amplitude oscillatory and distraction movements(joint mobilization) techniques are used to stimulate the mechanoreceptors that may inhibit the transmission of nociceptors stimuli at the spinal cord or brain stem levels.

  • PDF

Ultrastructure of Nerve Cells in the Pars Intercerebralis of Cabbage Butterfly Pieris rapae L. (배추흰나비 (Pieris rapae L.) 뇌간부(腦間部)의 신경세포(神經細胞)에 대한 미세구조(微細構造))

  • Lee, B.H.;Kim, W.K.
    • Applied Microscopy
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 1982
  • The study on the nerve cells in the pars intercerebralis(IP) of 5-day-old cabbage butterfly Pieris rapae L. was performed to observe their ultrastructures and classify them on the basis. of the differences in size, shape and relative distribution cf cell organelles. The brain-subesophageal ganglion complex was fixed in 1% paraformaldehyde-1% gluaraldehyde mixture and embedded in araldite mixture. The transverse thin sections of IP were stained with uranyl acetate and lead citrate and examined by Hitachi 500 and ]EM 100B electron microscope. Five distinct types. of nerve cells are recognized and are arbitrarily designated as Type I, Type II Type III, Type IV and Type V. Type I neurone: These neurones are neurosecretory cells. Several neurosecretory cells are. recognized in the pars intercerebralis. They are roughly round or peach-shaped cells measuring $13{\sim}25{\mu}m$ in diameter. The rounded nucleus shows about $5{\sim}10{\mu}m$ in diameter. The chromatin is predominantly diffused with only occasional dense patches. The perikaryon contains numerous. mitochondria, free polyribosomes and neurosecretory granules. The neurosecretory granules are relatively uniform in electron density, and each one is about $100{\sim}400{\mu}m$ in diameter and surrounded by a single membrane. The granules are also observed mostly as in groups. In one group of neurones the cisternae of endoplasmic reticulum are distended or in other group of neurones are not distended. Golgi saccules are slightly dilated at their lateral extremities and contains. frequenty dense rounded materials. Type II neurone: Thes have the largest soma in the pars intercerebralis about $30{\sim}35{\mu}m$ in diameter. They also show roughly polygonal in shape. The nucleus is elongated or sickle-shaped. The chromatin is mainly in the euchromatin form. The perikarya in these cells are well populated with populated with free ribosomes and contain numerous mitochondria and Golgi bodies. The cisternae of granular endoplasmic reticulum are also well distributed. Type III neurone: They are oval or spindle-shaped and also medium-sized. neurones approximately $15{\sim}17{\mu}m$ in length. The nucleus is oval or slightly elongated in shape and $8{\sim}9{\mu}m$ in length. The chromatin occurs in diffused form. The cytoplasm contains many filamentous or oval mitochondria. The perikaryon has also numerous free polyribosomes and cisternae of granular endoplasmic reticulum. Type VI neurone: They are roughly polygonal in shape probably due to the close approximation of the adjacent cells. The soma is about $7{\sim}8{\mu}m$ in diameter. The nucleus is round or oval in shape and $5.0{\sim}5.8{\mu}m$ in diameter. The necleus also occupies a large proprion of the cell body. The perikaryon is well populated with free ribosomes and contains several mitochondria and cistenae of granular endoplasmic reticulum. Type V neurone: These neurones are similar to Type VI neurones in various respects such as cell size and cell inclusion, but they differ from Type IV neurones in shape. The soma is oval or slightly elongated. The cell body contains several filamentous and oval mitochondria.

  • PDF

Effects of Joint Mobilization Techniques on the Joint Receptors (관절 가동운동이 관절 감수기에 미치는 영향)

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.9-19
    • /
    • 1996
  • Type I, II, III are regarded as "true" joint receptors, type IV is considered a class of pain receptor. Type I, II and III mechanoreceptors, via static and dynamic input, signal joint position, intraarticular pressure changes, and the direction, amplitude, and velocity of joint movements. Type I mechanoreceptor subserve both static and dynamic physiologic functions. Type I are found primarily in the stratum fibrosum of the joint capsule and ligaments. Type I receptors have a low threshold for activation and are allow to adapt to changes altering their firing frequency. Type II receptors have a low threshold for activation. These dynamic receptors respond to joint movement. Type II receptors are thus termed rapidly adapting. Type II joint receptors are located at the junction of the synovial membrane and fibrosum of the joint capsule and intraarticular and extraarticular fat pads. Type III receptors have been found in collateral ligaments of the joints of the extremities. Morphologically similar to Golgi tendon organ. These dynamic receptors have a high threshold to stimulation and are slowly adating. Type IV receptors possess free nerve ending that have been found in joint capsule and fat pads. They are not normally active, but respond to extreme mechanical deformation of the joint as well as to direct chemical or mechanical irritation. Small amplitude oscillatory and distraction movements(joint mobilization) techniques are used to stimulate the mechanoreceptors that may inhibit the transmission of nociceptors stimuli at the spinal cord or brain stem levels.

  • PDF

The Ultrastructure of the Cutaneous Pigment Cells in the Amphibia (양서류 피부 색소세포의 미세구조)

  • 김한화;노용태;지영득;문영화
    • The Korean Journal of Zoology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 1981
  • The ultrastructures of the pigment cells in the Asiatic land salamander (Hynobius leechi) dorsal skin were obtained by means of electron microscope. The results were as follows; 1. The pigment cells of the epidermis consisted of the melanocytes in the germinal layer and of the melanophores distributing to the keratinocyte layer. The traits of these cells in the epidermis were as follows: A. The nuclei of the melanocytes were round or oval in shape and appeared as partly small or large infoldings of the nuclear envelope. B. Rough-surfaced endoplasmic reticulums and Golgi complexes were well developed in infranuclear cytoplasm. Many ribosomes were mainly distributed around the perinuclear portion. C. The melanosomes of the melanocytes were observed as a found or an oval shape and strong electron-dense or less electron-dense melanosomes were observed. D. The infoldings of the nuclear envelope in the melanophore were partly found deeper than those of the melanocyte. The cytoplasm of the melanophore filled with melanosomes caused organelles not to be observed in that. 2. The pigment cells in the dermis were composed of the xanthophores just beneath basement membrane and the melanophores in the connective tissue. The traits of these cells in the dermis were as follows: A. The xanthophores contained round or oval vesicles, and these vesicles were divided into 6 types (type I pterinosome, type II pterinosome, type III pterinosomes, type iv pterinosome, type V pterinosome, type VI pterinosome). B. Most of the nuclei of the melanophores in the dermis were elongate in shape, and a portion of the nuclear envelope was deep infolded. C. Becuase the cytoplasm was filled with the melanosomes of the same electron-density, organelles were not observed in the cytoplasm. D. Two processes of the melanophore in the dermis extended in parallel with a xanthophore and the cytoplasm in those processes were filled with the melanosomes.

  • PDF

Ultrastructure of the Hindgut Epithelial Cells in the Cockroach, Blattella germanica L. (바퀴의 後腸 上皮細胞들에 대한 微細構造)

  • Yu, Chai Hyeock
    • The Korean Journal of Zoology
    • /
    • v.28 no.1
    • /
    • pp.44-59
    • /
    • 1985
  • The epithelium of the hindgut in the german cockroach, Blattella germanica Linne, was observed with electron microscope. The epithelium of the ileum, which is located at the anterior hindgut, is composed of a single layer of squamous and cuboidal cells. The liminal surface of the epithelium is lined with the cuticular intima. The epithelial cells contain cell organelles expected to be found in absorptive cells, and some epithelial cells have numerous lamelated crystals, the "spherites". The rectal epithelium of posterior hindgut is composed of rectal pads which are covered with cuticular intima on the luminal side. The rectal pads are composed of columnar absorptive cells and basal cells. The apical plasma membrane of columnar cell is made of microvilli, where mitochondria associated with some of the microvilli. The lateral plasma membrane is highly infolded and space is an uniform width of approximately 200$\\AA$. Well developed mitochondria are found closely associated with the infoldings and this is referred to as the "mitochondrial-scalariform complex". A septate junction is found near the apical zone between the columnar absorptive cells, whereas many desmosomes and intercellular spaces are formed between the columnar cells. Basal cells are bowl-shaped where the convex surface is inlaid into the basal surface of the columnar cells while the concave surface faces the basal lamina. The cytoplasm of the basal cell is electron dense and contains well developed cell organelles. The basal sheath is located between the basal membrane and basal lamina, providing barrier between the epithelium and the hemolymph. The epithelium is surrounded by the subepithelial space and muscles. The subepithelial space, which is composed of fibrous connective tissue, is innervated by many tracheoles and axons.

  • PDF

Caffeine and 2-Aminoethoxydiphenyl Borate (2-APB) Have Different Ability to Inhibit Intracellular Calcium Mobilization in Pancreatic Acinar Cell

  • Choi, Kyung-Jin;Kim, Kab-Sung;Kim, Se-Hoon;Kim, Dong-Kwan;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Inositol 1,4,5-trisphosphate receptors ($InsP_3Rs$) modulate $Ca^{2+}$ release from intracellular $Ca^{2+}$ store and are extensively expressed in the membrane of endoplasmic/sarcoplasmic reticulum and Golgi. Although caffeine and 2-aminoethoxydiphenyl borate (2-APB) have been widely used to block $InsP_3Rs$, the use of these is limited due to their multiple actions. In the present study, we examined and compared the ability of caffeine and 2-APB as a blocker of $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores and $Ca^{2+}$ entry through store-operated $Ca^{2+}$ (SOC) channel in the mouse pancreatic acinar cell. Caffeine did not block the $Ca^{2+}$ entry, but significantly inhibited carbamylcholine (CCh)-induced $Ca^{2+}$ release. In contrast, 2-APB did not block CCh-induced $Ca^{2+}$ release, but remarkably blocked SOC-mediated $Ca^{2+}$ entry at lower concentrations. In permeabilized acinar cell, caffeine had an inhibitory effect on InsP3-induced $Ca^{2+}$ release, but 2-APB at lower concentration, which effectively blocked $Ca^{2+}$ entry, had no inhibitory action. At higher concentrations, 2-APB has multiple paradoxical effects including inhibition of Ins$P_3$-induced $Ca^{2+}$ release and direct stimulation of $Ca^{2+}$ release. Based on the results, we concluded that caffeine is useful as an inhibitor of $InsP_3R$, and 2-APB at lower concentration is considered a blocker of $Ca^{2+}$ entry through SOC channels in the pancreatic acinar cell.

Ultrastructural Study on the Development of Notochordal Cells in Nucleus Pulposus of Human Fetuses (인태아(人胎兒) 수핵(髓核) 발육(發育)에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究))

  • Yoon, Jae-Rhyong;Bae, Choon-Sang;Kim, Eun-Kyung
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.39-56
    • /
    • 1991
  • The development of notochordal cells of nucleus pulposus was studied with electron microscope in human fetuses ranging from 30 mm to 260 mm crown-rump length. At 30 mm fetus, primitive notochordal cells were large with central nucleus, few organelles, and their cytoplasm usually contained dense glycogen and fine filaments. Notochordal cells at all ages contained bundles of fine filaments of indeterminate nature. One unusual feature of fetal notochordal cells was the consistent presense of rough endoplasmic reticulum surrounding poorly developed mitochondria. At 50 mm fetus, notochordal cells formed dense masses with interdigitating cell membranes connected by a variety of cell to cell junctions. With increasing age, the cell connections became slender threaded cytoplamic extending from cell and enclosed large extracellular space. Chondrocyte-like cells appeared to be separated by large volumes of extracellular matrix. Viable notochordal and condrocyte-like cells existed in specimen from all age. The extracellular spaces were filled with fibrillar and granular material by 90 mm fetus. Necrotic cells were distinguished by loss of their membrane integrity, vacuolization of their organelles, and the presence of dense osmiophilic masses. In adult tissue, notochordal cells became rounded or irregular in shape and developed a pericellular matrix consisting of collagen fibrile, and dense particle. The structure of notochordal cells and their persistance in the nucleus pulposus after fetal life suggested that they may have a significant role in the formation and maintenance of the nucleus pulposus. The presence of Golgi complex and well-developed endoplasmic reticulum in chondrocyte-like cells suggested that they are capable of producing and maintaining the extracellular matrix.

  • PDF