Browse > Article
http://dx.doi.org/10.1186/s42649-020-00036-5

Fine structure of the silk spinning system in the caddisworm, Hydatophylax nigrovittatus (Trichoptera: Limnephilidae)  

Hyo-Jeong Kim (Department of Biological Sciences, Dankook University)
Yan Sun (Department of Biological Sciences, Dankook University)
Myung-Jin Moon (Department of Biological Sciences, Dankook University)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 16.1-16.11 More about this Journal
Abstract
Silk is produced by a variety of insects, but only silk made by terrestrial arthropods has been examined in detail. To fill the gap, this study was designed to understand the silk spinning system of aquatic insect. The larvae of caddis flies, Hydatophylax nigrovittatus produce silk through a pair of labial silk glands and use raw silk to protect themselves in the aquatic environment. The result of this study clearly shows that although silk fibers are made under aquatic conditions, the cellular silk production system is quite similar to that of terrestrial arthropods. Typically, silk production in caddisworm has been achieved by two independent processes in the silk glands. This includes the synthesis of silk fibroin in the posterior region, the production of adhesive glycoproteins in the anterior region, which are ultimately accumulated into functional silk dope and converted to a silk ribbon coated with gluey substances. At the cellular level, each substance of fibroin and glycoprotein is specifically synthesized at different locations, and then transported from the rough ER to the Golgi apparatus as transport vesicles, respectively. Thereafter, the secretory vesicles gradually increase in size by vesicular fusion, forming larger secretory granules containing specific proteins. It was found that these granules eventually migrate to the apical membrane and are exocytosed into the lumen by a mechanism of merocrine secretion.
Keywords
Fine structure; Silk; Caddisworm; Hydatophylax nigrovittatus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Sehnal, H. Akai, Insect silk glands: Their types, development and function, and effects of environmental factors and morphogenetic hormones on them. J. Insect Morphol. Embryol. 19, 79-132 (1990)
2 K. Kronenberger, C. Dicko, F. Vollrath, A novel marine silk. Naturwissenschaften 99, 3-12 (2012)
3 M.J. Moon, E.K. Tillinghast, Fine structure of the glandular epithelium during secretory silk production in the black widow spider, Latrodectus mactans. Kor. J. Biol. Sci. 6, 327-333 (2002)
4 J.P. O'Brien, S.R. Fahnestock, Y. Termonia, K.H. Gardner, Nylons from nature: Synthetic analogs to spider silk. Adv. Mater. 10, 1185-1195 (1998)
5 K.M. Rudall, W. Kenchington, Arthropod silks: The problem of fibrous proteins in animal tissues. Annu. Rev. Entomol. 16, 73-96 (1971)
6 F. Sehnal, T. Sutherland, Silks produced by insect labial glands. Prion 2, 145-153 (2008)
7 J.G. Park, M.J. Moon, Fine structural analysis on triad spinning spigots of an orbweb spider's capture threads. Entomol. Res. 44, 121-129 (2014)
8 A.R. Tindall, The larval case of Triaenodes bicolor Curtis (Trichoptera: Leptoceridae). Proc. Roy. Ent. Soc. Lond. A 35, 93-96 (1960)
9 F. Vollrath, D.P. Knight, Liquid crystalline spinning of spider silk. Nature 410, 541-548 (2001)
10 F. Vollrath, E.K. Tillinghast, Glycoprotein glue beneath a spider web's aqueous coat. Naturwissenschaften 78, 557-559 (1991)
11 A. Weiskopf, K. Senecal, P. Vouros, D. Kaplan, C.M. Mello, The carbohydrate composition of spider silk: Nephila edulis dragline. Glycobiology 6, 1703-1708 (1996)
12 G.B. Wiggins, Caddisflies: The Underwater Architects (University of Toronto Press, Toronto, 2004)
13 J.H. Yang, D.J. Merritt, The ultrastructure of the silk-producing basitarsus in the Hilarini (Diptera: Empidinae). Arthropod Struct. Dev. 32, 157-165 (2003)
14 K. Ohkawa, T. Nomura, R. Arai, K. Abe, M. Tsukada, K. Hirabayashi, in Characterization of Underwater Silk Proteins from Caddisfly Larva, Stenopsyche marmorata, ed. by T. Asakura, T. Miller. Biotechnology of silk - biologically-inspired systems, vol 5 (Springer, Dordrecht, 2014)
15 N. Yonemura, K. Mita, T. Tamura, F. Sehnal, Conservation of silk genes in Trichoptera and Lepidoptera. J. Mol. Evol. 68, 641-653 (2009)
16 N.N. Ashton, R.J. Stewart, Aquatic caddisworm silk is solidified by environmental metal ions during the natural fiber-spinning process. FASEB J. 33, 572-583 (2019)
17 H. Kim, J.K. Seo, K.J. Kim, K.H. Chung, M.J. Moon, Fine structural reconstruction on the testicular cyst of the furrow orb weaver Larinioides cornutus by 3D volume rendering. Anim. Cells Sys. 20, 267-275 (2016)
18 M. Tszydel, A. Zablotni, D. Wojciechowska, M. Michalak, I. Krucinska, K. Szustakiewicz, M. Maj, A. Jaruszewska, J. Strzelecki, Research on possible medical use of silk produced by caddisfly larvae of Hydropsyche angustipennis (Trichoptera, Insecta). J. Mech. Behav. Biomed. Mater. 45, 142-153 (2015)
19 S. Busse, T.H. Buscher, K.E. Taylor, L. Heepe, J.S. Edgerly, S.N. Gorb, Pressureinduced silk spinning mechanism in webspinners (Insecta: Embioptera). Soft Matter 47, 9742-9750 (2019)
20 M.S. Engster, Studies on silk secretion in the Trichoptera (F. Limnephidae). I. Histology, histochemistry, and ultrastructure of the silk glands. Cell Tissue Res. 169, 77-92 (1976)
21 C.L. Craig, Evolution of arthropod silks. Annu. Rev. Entomol. 42, 231-267 (1997)
22 E.K. Tillinghast, M. Townley, The independent regulation of protein synthesis in the major ampullate glands of Araneus cavaticus Keyserling. J. Insect Physiol. 32, 117-123 (1986)
23 A.A. Walker, S. Weisman, J.S. Church, D.J. Merritt, S.T. Mudie, T.D. Sutherland, Silk from crickets: A new twist on spinning. PLoS One 7, e30408 (2012)
24 J. Kovoor, in Comparative Structure and Histochemistry of Silk-Producing Organs in Arachnids, ed. by W. Nentwig. Ecophysiology of spiders (Springer-Verlag, Berlin, 1987), pp. 159-186
25 S. Sasaki, E. Nakajima, Y. Fujii-Kuriyama, Y. Tashiro, Intracellular transport and secretion of fibroin in the posterior silk gland of the silkworm Bombyx mori. J. Cell Sci. 50, 19-44 (1981)
26 R.J. Stewart, C.S. Wang, Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromolecules 11, 969-974 (2010)
27 T.D. Sutherland, J.H. Young, S. Weisman, C.Y. Hayashi, D.J. Merritt, Insect silk: One name, many materials. Annu. Rev. Entomol. 55, 171-188 (2010)
28 H. Akai, in The Ultrastructure and Functions of the Silk Gland Cells of Bombyx mori, ed. by R. C. King, H. Akai. Insect ultrastructure (Springer, Boston, 1984), pp. 323-364
29 N.N. Ashton, D. Taggart, R.J. Stewart, Silk tape nanostructure and silk gland anatomy of trichoptera. Biopolymers 97, 432-445 (2012)
30 N.N. Ashton, C. Wang, R.J. Stewart, in The Adhesive Tape-like Silk of Aquatic Caddisworms. Biological adhesives (Springer, Berlin, 2016), pp. 107-128
31 S.C. Crew, B. Opell, The features of capture threads and orb-webs produced by unfed Cuyclosa turbinata (Araneae: Araneidae). J. Arachnol. 34, 427-434 (2006)
32 M.J. Moon, Fine structure of the aggregate silk nodules in the orb-web spider Nephila clavata. Anim. Cells Sys. 22, 421-428 (2018)
33 M.J. Moon, J.G. Park, Spinning apparatus for the dragline silk in the funnel-web spider Agelena limbata (Araneae: Agelenidae). Anim. Cells Sys. 12, 109-116 (2008)
34 M.J. Moon, E.K. Tillinghast, Silk production after mechanical pulling stimulation in the ampullate silk glands of the barn spider, Araneus cavaticus. Entomol. Res. 34, 123-130 (2004)
35 M.J. Moon, S.C. Yang, Microstructure of pretarsal pulvilli in the shield bug Acanthosoma spinicolle (Heteroptera: Acanthosomatidae). Entomol. Res. 44, 199-206 (2014)
36 H. Akai, M. Kobayash, Incorporation of labeled thymidine into the silk gland of the silkworm. Nature 206, 847-848 (1965)