• Title/Summary/Keyword: Golgi membrane

Search Result 118, Processing Time 0.028 seconds

Ultrastructures of the Cutaneous Chromatophores and Pigment Granule Formation in the Goldfish, Carassius auratus L. I. Xanthophore (금붕어(Carassius auratus L.) 피부(皮膚) 색소세포(色素細胞)의 미세구조(微細構造) 및 色素顆粒(색소과립) 형성(形成)에 관한 연구(硏究) I. 황색소세포(黃色素細胞)(xanthophore))

  • Moon, Myung-Jin;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.35-48
    • /
    • 1986
  • Ultrastructures of the cutaneous xanthophores and formation of pigment granules in the goldfish, Carassius auratus L., are studied with electron microscope. The cutaneous xanthophores are observed only in dermis and pigment granules of these pigment cells are pterinosomes and carotenoid vesicles. By the differentiated level, pterinosomes are subdivided into 3 types; while type I pterinosomes have clear limiting membranes and contain some amorphous fine fibrous structures, type II pterinosomes have thick and densely aggregated fibrous materials. Type III pterinosomes have concentric lamellar structures in the granules. Pigment granules of the xanthophores are originated from the Golgi complexes and pinocytotic vesicles of plasma membrane as well as rER-rich cells among the chromatophores are presumed to be associated with the accumulation of pigment materials.

  • PDF

The role of lipid binding for the targeting of synaptic proteins into synaptic vesicles

  • Jang, Deok-Jin;Park, Soo-Won;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Synaptic vesicles (SVs) are key structures for synaptic transmission in neurons. Numerous membrane-associated proteins are sorted from the Golgi complex to the axon and the presynaptic terminal. Protein-protein and protein-lipid interactions are involved with SV targeting in neurons. Interestingly, many SV proteins have lipid binding capability, primarily with either cholesterol or phosphoinositides (PIs). As examples, the major SV protein synaptophysin can bind to cholesterol, a major lipid component in SVs, while several other SV proteins, including synaptotagmin, can bind to PIs. Thus, lipid-protein binding plays a key role for the SV targeting of synaptic proteins. In addition, numerous SV proteins can be palmitoylated. Palmitoylation is thought to be another synaptic targeting signal. Here, we briefly describe the relationship between lipid binding and SV targeting.

iRhoms; Its Functions and Essential Roles

  • Lee, Min-Young;Nam, Ki-Hoan;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.

Ultrastructural Study of Tentacular Pigment Cells in the Chinese Mystery Snail, Cipangopazudina chinensis mazleata Reeve (논우렁이(Cipangopaludina chinensis malleuta Reeve) 촉수 색소세후의 징세횡조에 관한 연구)

  • 송용직;문영진김우갑김창환
    • The Korean Journal of Zoology
    • /
    • v.30 no.3
    • /
    • pp.292-300
    • /
    • 1987
  • The ultrastructure of the tentacular pigment cells and the origin of the pigment granules in the Chinese mystery snail, Cipangopaludina chinensis malleata Reeve, are studied with electron microscope. Tentacular pigment cells of the Enail are the melanophores which contain electron dense melanosomes(melanin pigment granules) . Melanophores are distributed among the connective tissues but otter kind of dermal chromatephores are not observed. The epidermal melanin units are observed in the epithelial tissues of the tentacles. Among the several kinds of epithelial cells, only the epithelial supporting cells contain these pigment granules. Synthesis of the pigment materials is from the rough ER and pigment granules are finally being packaged and released by the Golgi complexes but limiting membrane of these granules are presumed to be originated from the smooth ER.

  • PDF

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • 나병국;송철용
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-218
    • /
    • 2002
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

An Electron Microscopic Radioautographic Study of the Synthesis and Migration of the Glycoproteins in the Osteoclast of the Mice Maxillary Alveolar Bone (생쥐 상악치조부에서의 파골세포의 당단백 합성 및 이동에 관한 전자현미경 자기방사법적 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.22 no.2
    • /
    • pp.118-126
    • /
    • 1992
  • The pathway and time course of fucose-containing glycoprotein synthesis and intracellular translocation in osteoclasts of the mice maxillary alveolar bone were investigated by electron microscopic radioautography. Male Balb-C mice weighing 17gm were anesthetized with Nembutal and injected via the external jugular vein with 2.5 mCi of $L-[6-^{3}H]-fucose$ (specific activity 16.8 mCi/mmol) in 0.1 ml of sterile saline solution. At 5, 10, 20, 35 minutes and 8 hours after administration of the $^{3}H-fucose$, animals were killed by intracardiac perfusion of 30ml of 2% glutaraldehyde in a modified Tyroid solution, pH 7.4. The maxillae were then removed and further fixed in Karnovsky fixative for an additional 3-4 hours. After rinsing in 0.1M cacodylate buffer for 10 minutes, the maxillae were demineralized for 2 weeks at $4^{\circ}C$ in ethylene diamine tetra acetate containing 2% glutaraldehyde. The first interdental areas were mesiodistally sectioned into slices of 1mm thickness and postfixed in osmium tetroxide. Tissues were then dehydrated and embedded in Poly Bed. To prepare electron microscopic radioautography, the dipping method of Kopriwa (1973) was employed. Thin sections were coated with a crystalline monolayer of ILford $L_4$ photographic emulsion. After exposure for 4 months at $4^{\circ}C$, the sections were developed Kodak Microdol-X and Phenidon (for compact grains), fixed in 30% sodium thiosulfate, stained with uranyl acetate and lead citrate and examined in the electron microscope (JEOL 1200 EX). At 5, 10 and 20 minutes after injection, $^{3}H-fucose$ was concentrated in Golgi cisternae of the osteoblasts. By 35 minutes the labels were observed over small vesicles in the suprannclear area of osteoclasts. At 8 hours, numerous silver grains were located on the ruffled border and cell membrane of osteoclasts. These results indicate that fucose molecules are added in the Golgi apparatus and small vesicles appear to be responsible for translocation of the glycoproteins to the marginal portion of osteoblasts. The glycoproteins are distributed on the osteoclast cell surface and especially over the ruffled border.

  • PDF

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • Na, Byung-Kuk;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-223
    • /
    • 2000
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

  • PDF

Ultrastructural Changes on the Secreting Cells of the Prothoracic Gland During the Larva-pupal Molt of Bombyx mori L. (누에나방(Bombyx mori L.) 종령유충일용 전환기(轉換期)의 전흉선(前胸腺) 분필세포(分泌細胞)의 미세구조적 변화)

  • Oh, S.J.;Kim, J.H.;Kim, C.W.;Kim, W.K.
    • Applied Microscopy
    • /
    • v.12 no.2
    • /
    • pp.69-79
    • /
    • 1982
  • In order to define the morphological changes of the secreting cells of prothoracic gland during larva-pupal molt, ultrastructural observations were carried out using Bombyx mori L. as the experimental material. At first stage of present experiment, 4 day old 5th instar larva, the polyhedral secreting cells were centrally located in the prothoracic gland surrounded by the connective sheath. The secreting cells were attached to the neighboring cells by the prominent desmosomes, and the plasma membrane contacted with connective sheath were highly infolded. In cytoplasm, the most of the cell organelles, such as rod-like mitochondria, rough surfaced endoplasmic reticulum, ribosome were developed. As the stages advance from larva to pupa, general feature of the secreting cells were retained, but structural changes of the various cytoplasmic organelles-ribosome, rough surfaced endoplasmic reticulum, mitochondria, Golgi apparatus, lamellar body, and vesicle-were noted. In the perinuclear cytoplasm of the secreting cells at the stage of 6 day old 5th instar larva, it is peculiar that only a large amount of ribosomes were distributed and the other organelles were retreated from the juxtanuclear region. Just before and after spining cocoon, these features were more remarkable. Rough surfaced endoplasmic reticulum were gradually increased from the stage just before spining cocoon to the pharate pupa. Rod-like mitochondria with irregular cristae and the matrix showing low density were distributed throughout the cytoplasm in the secreting cells of the 4 day old 5th instar larva. Sometimes, longitudinally distended and curved mitochondria were observed. At the stage of pharate pupa, most of mitochondria were deformed. The rod-like mitochondria of the secreting cells of pupal prothoracic gland were narrower than those of 4 day old 5th instar larva, and the electron density of the mitochondrial matrix is increased in pupa. Golgi apparatus were a few in number in both stages, last instar larva and spining cocoon. In stages of the pharate pupa, the Golgi apparatus were frequently observed. Cytoplasmic vesicles were observed for the first time in the secreting cells of one day after spining cocoon, and the number and the size of cytoplasmic vesicles were distinctly increased inpharate pupa and just after pupation. In the secretory cells of the PG, it in concluded that the RER was closely related to syntheting the enzymes seem to produce the ecdysone.

  • PDF

Morphology and Ultrastructure on the Gill of the Fleshy Shrimp, Penaeus chinensis (Decapoda: Penaeidae) (대하(Penaeus chinensis) 아가미의 형태 및 미세구조)

  • Lee, Jung-Sick;Kang, Ju-Chan;Jeong, Seon-Young
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.311-319
    • /
    • 2000
  • The gill morphology and ultrastructure of the fleshy shrimp, Penaeus chinensis were investigated by light and electron microscopy. Fleshy shrimp has dendrobranchiate gills. Gill has a longitudinal septum dividing them into afferent and efferent channel. Each gill lamella is covered by multi-layered thin cuticle of different electron density. The lamella basal cell is squamous and contains cytoplasm of electron dense. Simple epithelial layer consists of squamous epithelium contained large nucleus. The lamella pillar structures are characterized by the axial microtubules and lateral membrane interdigitations Secretory cells of AB-PAS negative are multicellular gland. In active gland each cell boundary is not apparent and the cytoplasm contains smooth endoplasmic reticula, mitochondria, membrane-bounded secretory vesicles of low electron density and granular resettes. In inactive gland each cell boundary is apparent and the cytoplasm is occupied with numerous small granules of electron dense. The well-developed rough endoplasmic reticula and Golgi apparatus are observed in the unicellular gland of alcian blue positive.

  • PDF

Fine Structures of the Enteroendocrine Cells in the Duodenal Mucosa of the Hedgehog, Erinaceus koreanus (고슴도치 십이지장 점막의 장내분비세포의 미세구조)

  • Choi, Wol-Bong;Won, Moo-Ho;Seo, Ji-Eun
    • Applied Microscopy
    • /
    • v.17 no.1
    • /
    • pp.83-97
    • /
    • 1987
  • In order to discriminate the enteroendocrine cell types in the mucosal epithelium of the normal duodenum of the Korean hedgehog (Erinaceus koreanus). The tissues were fixed in the mixture of 1% paraformaldehyde and 1% glutaraldehyde in phosphate buffer (pH 7.2), and postfixed in 2% osmium tetroxide (phosphate buffer, pH 7.2). They were embedded in Araldite, and the ultrathin sections were made by LKB-V ultratome following the inspection of semithin sections stained with toluidine blue-borax solutions. Ultrathin sections contrasted with uranyl acetate and lead citrate were observed with JEM 100B electron microscope. At least six types of enteroendocrine cells distributed in the mucosal epithelium of the duodenum were identified according to their morphological characteristics mainly based on the size, shape, number and electron density of the secretory granules. Type I cells had moderately developed organelles. The secretory granules were pleomorphic ($370X510nm$), and the granule cores with high electron density were enveloped in limiting membrane and characterized by a narrow halo. Type II cells contained an indented nucleus and well-developed organelles. The secretory granules were round (350 nm) and classified in two kinds by electron density, moderate and high. Both granules were surrounded by limiting membrane and those with high electron density showed often a wide halo. Type III cells had an indented nucleus. The secretory granules with various electron density were round (220 nm) in shape. The granules with high electron density were enveloped in limiting membrane and characterized by a narrow halo, but those with low or moderate electron density had not been observed the limiting membrane. Type IV cells contained an indented nucleus and moderately developed organelles. The secretory granules were round (180 nm) in shape, and the granule cores with high electron density were enveloped in limiting membrane and showed often a wide halo. Type V cells had a large amount of rough endoplasmic reticulum. Secretory granules with low or moderate electron density were round (230 nm) in shape, and surrounded by limiting membrane and showed a narrow halo. Type VI cells contained an oval nucleus and well-developed organelles, especially Golgi complex. The secretory granules with high electron density were round (210 nm) in shape. The granules were enveloped in limiting membrane and showed often a wide halo.

  • PDF