• 제목/요약/키워드: Gold nanostructures

검색결과 30건 처리시간 0.034초

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF

Growth of Bi2O3 doped ZnO nanostructures fabricated by thermal evaporation method

  • 김경범;김선홍;정영훈;이영진;백종후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.243-243
    • /
    • 2009
  • Bi2O3 doped ZnO nanostructures structure were successfully synthesized by a thermal evaporatiion process and their structural characteristics were investigated. It is demonstrated that the growth condition such as the areal density, pretreatment of the substrates and growth temperature have great influence on the morphology and the alignment of the nanorods arrays. The density of Bi2O3 doped ZnO nanostructures is controlled by the gold (Au) nanoparticle density deposited on the silicon substrates. Relatively homogenous size and shape were observed by introducing gold(Au) seed-layer as nucleation centers on the substrates prior to the VLS reaction. The samples were characterized by X-ray diffraction, scanning electron microscopy.

  • PDF

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

Novel Patterning of Gold Using Spin-Coatable Gold Electron-Beam Resist

  • Kim, Ki-Chul;Lee, Im-Bok;Kang, Dae-Joon;Maeng, Sung-Lyul
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.814-816
    • /
    • 2007
  • Conventional lithography methods of gold patterning are based on deposition and lift-off or deposition and etching. In this letter, we demonstrate a novel method of gold patterning using spin-coatable gold electron-beam resist which is functionalized gold nanocrystals with amine ligands. Amine-stabilized gold electron beam resist exhibits good sensitivity, 3.0 mC/$cm^2$, compared to that of thiol-stabilized gold electron beam resists. The proposed method reduces the number of processing steps and provides greater freedom in the patterning of complex nanostructures.

  • PDF

Enhanced Photodetection with Hot Electrons in Graphene-mediated Plasmonic Nanostructure

  • Kim, Jeong Hyeon;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.408-408
    • /
    • 2014
  • Graphene has received attention with its high electron mobility and visual transparency as a promising material for optoelectronic and photonic applications. Combination of graphene and conducting nanostructures i.e. plasmonic structures has recently been researched for enhancing light-matter interaction and overcoming diffraction limit of light. Here we show enhanced photodetection of incoherent visible light with graphene-mediated plasmonics. Gold nanoparticles fabricated by focused ion beam was used as an active element of photodetection and graphene was utilized as an interfacing material between nanostructures and electrodes. Hot electrons generated upon plasmon decay within nanoparticles pass over the potential barrier between nanostructure and graphene and give rise to a photocurrent with built-in electric field. We report 76.7% enhancement of photocurrent under resonant irradiation of fiber-coupled halogen lamp compared to the case without light illumination. We showed wavelength-dependent current response arisen from plasmonic nanostructure, providing a good agreement with theoretical calculation.

  • PDF

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad;Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.113-122
    • /
    • 2020
  • Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.

알루미늄 양극산화를 이용한 육각구조로 규칙적으로 배열된 금 나노구조 제조 (Fabrication of Hexagonally Assembled Gold Nonodots Based on Anodization of Aluminum)

  • 이준호;이한섭;최진섭
    • 공업화학
    • /
    • 제20권2호
    • /
    • pp.191-194
    • /
    • 2009
  • 양극산화(anodization)에 의해 얻어지는 다공성 알루미나는 균일한 규칙성의 나노 구조를 지니며, 이를 제어하는 공정이 비교적 쉽고 경제적이어서 최근 연구가 광범위하게 진행되고 있다. 본 연구에서는 1차로 옥살산(oxalic acid)을 이용하여 양극 산화를 한 산화물 만들고, 이 산화물을 선택적으로 제거한 뒤 생기는 알루미늄 표면의 벌집모양의 패턴에 붕산(boric acid)을 이용하여 2차 양극산화를 하여 알루미늄 산화물 나노 돗(nanodot)을 형성하였다. 정렬된 정육면체의 모서리에 20 nm 높이의 나노 돗이 배열되어 있는 구조를 형성하기 위한 최적의 조건을 조사하였다. 알루미늄 산화물 나노 돗 층에 금을 코팅하여 육각벌집모양으로 배열된 금 나노 돗 층을 형성하였다. 이 표면은 향후 바이오센서에 적용될 것으로 기대된다.